
Information Systems 85 (2019) 92–113

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Binary classification in unstructured spacewith hypergraph
case-based reasoning
Alexandre Quemy
IBM Krakow Software Lab, Cracow, Poland
Faculty of Computing, Poznań University of Technology, Poznań, Poland

h i g h l i g h t s

• A new method for binary classification in unstructured space is proposed.
• The method is well calibrated: its support can directly be interpreted as probability.
• Without data assumption or ad-hoc metric, it competes with more specialized methods.
• It ranks second after Neural Network compared to 9 other methods on 7 datasets.
• It gives consistently good results without hyperparameter tuning or feature engineering.

a r t i c l e i n f o

Article history:
Received 11 June 2018
Received in revised form 26 February 2019
Accepted 7 March 2019
Available online 18 March 2019

Keywords:
Binary classification
Hypergraph
Case-based reasoning

a b s t r a c t

Binary classification is one of the most common problem in machine learning. It consists in predicting
whether a given element belongs to a particular class. In this paper, a new algorithm for binary classi-
fication is proposed using a hypergraph representation. The method is agnostic to data representation,
can work with multiple data sources or in non-metric spaces, and accommodates with missing values.
As a result, it drastically reduces the need for data preprocessing or feature engineering. Each element
to be classified is partitioned according to its interactions with the training set. For each class, a
seminorm over the training set partition is learnt to represent the distribution of evidence supporting
this class.

Empirical validation demonstrates its high potential on a wide range of well-known datasets
and the results are compared to the state-of-the-art. The time complexity is given and empirically
validated. Its robustness with regard to hyperparameter sensitivity is studied and compared to standard
classification methods. Finally, the limitation of the model space is discussed, and some potential
solutions proposed.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In many real-life situations, one tries to take a decision based
on previous similar situations. Each situation is described by a
certain amount of relevant information, either collected by an ex-
pert, or automatically e.g. by some sensors. Those situations share
similarities on which to make analogies or counter-examples
in order to take new decisions. Conversely, in general, if two
situations do not share any common characteristic, then they are
totally independent, i.e. it is impossible to infer one’s outcome
from the other one. The purpose of supervised machine learning
algorithms is to exploit the available information and interactions
between past cases or examples in order to build a model or infer
the key rules to take correct decisions.

E-mail address: aquemy@pl.ibm.com.

Due to the large variety of concrete situations that can be
reduced to binary classification, it is one of the most studied
problem in machine learning. In this paper, we investigate the
problem of binary prediction under a supervised setting.

This paper contributes to binary classification with a new
algorithm called Hypergraph Case-Based Reasoning (HCBR). The
idea is to create a hypergraph where each element of the training
set is a hyperedge and vertices are represented by the features
describing the elements. The intersections between edges create
a partition, unique to a hypergraph. For each case, we model the
support as a convex combination of the elements of this partition.
Each of those elements is valued according to its importance w.r.t.
the set of all the hyperedges it belongs to and their respective
labels.

The paper is an extension of [1] with a focus on separating
the abstract framework from the specific implementation used
for the experiments. On top of the previous comparison to the

https://doi.org/10.1016/j.is.2019.03.005
0306-4379/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2019.03.005
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2019.03.005&domain=pdf
mailto:aquemy@pl.ibm.com
https://doi.org/10.1016/j.is.2019.03.005

A. Quemy / Information Systems 85 (2019) 92–113 93

best literature results, we extended the empirical validation with
a comparison between HCBR and nine alternative methods. We
also added a validation on unstructured datasets. A study of
learning curves and model spaces, highlighted some properties
of HCBR and the limitations of the current model space, thus
shaping priority axes for future work. Among other refinements,
matricial formulation for the model space and model selection is
provided to ease efficient implementation. More evidence con-
cerning model calibration is added.

The plan of the paper is as follows: in Section 2, we present the
problem of binary classification and related work. In particular, in
Section 2.1, we present the well-understood and unified frame-
work to solve binary classification. Section 2.2 briefly introduces
other approaches to classification. Section 2.3 highlights the ne-
cessity of working in unstructured spaces and presents related
work w.r.t. metric learning and data wrangling. A formulation
of binary classification in an abstract space of information is
proposed in Section 2.5. The main contribution of this paper is
Section 3 which defines HCBR framework. The rest of the paper
focuses on empirical validation: Section 4 presents empirical
results on seven structured datasets from the UC Irvine Machine
Learning Repository (UCI)1 and the LIBSVM,2 while Section 5 is
dedicated to unstructured datasets for text classification. Sec-
tion 6 studies important properties, namely the computational
time, learning curves and hyperparameters usage. In Section 7,
we discuss the current limitations and possible model space
extensions. The paper ends in Section 8 with a discussion about
the results, future work, and possible improvements.

This paper is accompanied by Additional Material.3

2. Binary classification and related work

Before introducing the problem of binary classification, we
present the notations used throughout this paper. Vectors are
denoted in bold and small case (e.g. x) and their components in
small case (e.g. xi). A collection of vectors is denoted in bold and
large case (e.g. X). |x| (resp. |X|) denotes the cardinal of the vector
x (resp. the collection X) while ∥x∥ is its norm. The scalar product
is denoted by ⟨., .⟩. For a matrix A = (aij), ai: is the ith row vector
and a:j the jth column vector.

In machine learning, the problem of classification consists in
finding a mapping from an input vector space X to a discrete
decision space Y using a set of examples. The binary classification
problem is a special case such that Y has only two elements. It is
often viewed as an approximation problem s.t. we want to find
an estimator J̄ of an unknown mapping J available only through
a sample called training set. A training set (X, y) consists of N
input vectors X = {x1, . . . , xN} and their associated correct class
y = {yi = J(xi)}Ni=1.

Let J (X ,Y) be the class of mappings from X to {−1, 1}, or
simply J if there is no ambiguity. A machine learning algorithm
to solve binary classification is an application A : XN

× YN
→ J

capable of providing a good approximation for any J ∈ J under
some assumptions on the quality of the training set. In practice, it
is not reasonable to search directly in J and some assumptions on
the ‘‘shape’’ of J are made s.t. J̄ = A(X, y) belongs to a hypothesis
space or model space H ⊂ J . This restriction implies not only
that the exact mapping J is not always reachable but might also
not be approximated correctly by any element of H. The choice
of the model space is thus crucial as it should be large enough
to represent fairly complex functions and small enough to easily
find the best available approximation.

1 http://archive.ics.uci.edu/ml/index.php.
2 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
3 http://www.cs.put.poznan.pl/events/2018-IS-special-issue.html.

In general, a robust classification algorithm must able to ap-
proximate correctly any possible mapping. The problem of finding
such algorithm consists in minimizing the generalization error for
all possible mappings. Formally, it consists in solving:

min
A

∑
J∈J

∫
X
∥J(x)− J̄(x)∥µ(x)dx (1)

where µ is a probability measure over X .
In practice, the generalization error cannot be computed, and

the set of possible mappings is unreasonably large. For those
reasons, we aim at minimizing the empirical classification error
on a reasonably large set of datasets D = {(X1, y1), . . . , (XK , yK)},
i.e.

min
A

∑
(X,y)∈D

∑
(x,y)∈(X,y)

I{y̸=J̄(x)}. (2)

To highlight the differences between standard classification
problem and our approach, we briefly present linear models
for classification followed by the challenges of classification in
unstructured spaces. For an overview of theoretical results on
classification, we refer the reader to [2].

2.1. Linear binary classification

The problem of binary classification is commonly studied with
X = RM . Many popular classification approaches such as SVM [3],
perceptron [4] or logistic regression [5] define the model space as
the set of M-hyperplanes. A M-hyperplane is uniquely defined by
a vector w ∈ RM and a bias w0 ∈ R, and is formulated by

hw(x) = ⟨w, x⟩ + w0 = 0 (3)

The homogeneous notation consists in adding w0 tow by rewriting
x such that x = (1, x1, . . . , xM). The hyperplane equation (3) is
then expressed by hw(x) = ⟨w, x⟩. A hyperplane separates RM

into two regions, and thus, can be used as a discriminative rule
s.t.

J̄w(x) =
{

1 hw(x) > 0
−1 hw(x) ≤ 0 (4)

Then, given a training set (X, y), the classification problem is
equivalent to finding the best hyperplane s.t. it minimizes a
certain loss function over the training set [6]:

w∗ = argmin
w

N∑
i=1

ℓ(w, xi)+ λR(w) (5)

where R(w) is regularization term to prevent overfitting (usually
∥w∥22 or ∥w∥1) and λ > 0 a hyperparameter controlling the
effect of regularization. Note that (5) is a parametric problem
due to the choice of model space. Several losses functions exists
and are generally based on the margin of xi which is defined by
m(w, xi) = J(xi)hw(xi). The margin represents the distance of a
vector xi to the hyperplane defined by hw. It is positive if xi is
correctly classified, negative otherwise. For the most known, the
0–1 loss, hinge loss and log loss are defined by

ℓ01(w, x) = I{m(w,x)≤0}
ℓhinge(w, x) = max(0, 1−m(w, x))
ℓlog(w, x) = ln(1+ e−m(w,x))

(6)

The Perceptron algorithm uses the 0–1 loss, while SVMminimizes
the hinge loss and the Logistic Regression the log loss.

http://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://www.cs.put.poznan.pl/events/2018-IS-special-issue.html

94 A. Quemy / Information Systems 85 (2019) 92–113

2.2. Other approaches to binary classification

The method developed in this paper is discriminative and
fits the mathematical framework introduced above. Therefore, it
models p(y|x). There exists other framework to handle binary
classification. We briefly introduce them as they will be compared
to HCBR in Section 4.

Generative techniques such as Naive Bayes or Bayesian Net-
works [7] estimate the joint probability p(x, y). They make as-
sumptions on the data distribution (e.g. a mixture of gaussians)
and estimate the unknown parameters to generate predictions.

Another popular family of classification techniques are based
on trees [8,9]. For instance, Random Forest [10,11] is one of the
most widely used method due to its good performances [12] and
several extensions have been developed [13,14]

Last but not least, Deep Learning is a family of techniques
based on stacking layers of neurons whose weights are adjusted
using gradient back-propagation [15]. It represents the state-of-
the-art in classification in multiple domains [16]: vision, audio
and natural language processing to name few.

2.3. On the necessity and problems of unstructured spaces

In machine learning, and broadly speaking in mathematics,
the term structured refers to objects that are not living in Rn. In
particular, there is no obvious metric between objects. Graphs are
an example of structured object and the right notion of distance
between two graphs depends on the considered problem.

In the database and data science community, the usage is
different. A dataset is structured if it can be easily mapped into
pre-defined fields or represented by a relational database or
tabular-like schema. By opposition, any other dataset is unstruc-
tured or semi-structured (raw text, BoW, JSON, XML, graph, etc.).
A structured dataset does not guarantee a norm on the rows
because some columns might not be expressed in a space with
an obvious metric (e.g. categorical variables).

A key element to apply classification methods to datasets is
a (meaningful) metric, independently of whether or not the data
are stored in a structured format. Thus, we qualify of unstructured
a space without obvious or informative metric.4

A tremendous amount of data is collected but never used. The
data lakes turn into data swamps, notably because the natural
form of data is messy: not sanitized, in different formats, without
informative metric, etc. Most of the time, solving optimally a
concrete problem requires using data from multiple sources, thus
multiplying the above-mentioned problems. This highlights the
necessity to develop algorithms capable to work in any unstruc-
tured space. In this paper, we present a method working for any
unstructured space, allowing to relax usual constraints on the
input space:

1. non-metric space: there is no metric embedded with the
data space,

2. non-homogeneous cardinality: the number of features
per element is not fixed a priori,

3. representation agnostic: the concrete representation of
features does not influence the model.

To handle the problem of non-metric spaces, one can usemet-
ric learning methods. We present those methods in Section 2.3.1
and discuss how they do not handle the two other points and
differ from the method presented in this paper.

4 A discrete set can always be indexed, however, in this case, the usual
distance in N is uninformative, therefore not defining a structure.

A special yet very common case of non-homogeneous cardi-
nality is some missing values. As the data may be missing for
different reasons, there exists different ways of handling them
that we briefly present in Section 2.3.2. However, none of them
is as straightforward as having a classification method that works
for non-homogeneous cardinality.

Regarding representation agnosticity, the representation is
very often imposed by the classification method itself and when
the dataset does not respect those requirements, it has to be
transformed. Of course, exploiting the specificities of features
often leads to better results but also requires manual expertise
that blocks a wider adoption by end-users.

2.3.1. Metric learning
Choosing an appropriate pairwise metric to measure distance

between two points is crucial in the success of classification
algorithms [17]. Learning a metric consists in finding a projection
f from an initial space to a Euclidian space s.t. for any elements
x and x′, d(x, x′) = ∥f (x) − f (x′)∥. The metric should reflect
the semantic difference between objects. If the elements are
non-numerical, a metric can be viewed as a proxy to represent
the elements in a vector space s.t. it becomes possible to apply
standard classification methods. However, as reported by [18],
the literature mostly focused on numerical data, i.e. when the
elements already belong to a vector space.

The most common setting for metric learning is to find a
parametrization M of the Mahalanobis pseudometric dM (x, x′) =√
(x− x′)TM(x− x′) using the training set X and under the con-

straint that M is Positive Semi-Definite (PSD). Using M as the
identity recovers the usual Euclidian metric, whereas setting M
as the covariance matrix of X gives the original Mahalanobis dis-
tance [19]. Most methods aim at finding the parameters that best
agree with the following three sets of relations on the examples:

• S = {(xi, xj) : xi and xj are similar}, (must-link)

• D = {(xi, xj) : xi and xj are dissimilar}, (cannot-link)

• R = {(xi, xj, xk) : xi more similar to xj than to xk}. (rela-
tive)

However, supervised methods usually derived those sets (im-
plicitly or explicitly) from the examples and a proper notion of
neighborhood.

We now present the approaches with similarities to the one
introduced in this paper. For more detailed surveys on metric
learning, we refer the reader to [18,20].

LMNN [21,22] is one the most popular Mahalanobis metric
learning techniques and many other linear methods are based
on it. The constraint sets S and R are defined by a notion of
neighborhood:

• S = {(xi, xj) : yi = yj and xj belongs to the k-nearest
neighbors of xi},
• R = {(xi, xj, xk) : (xi, xj) ∈ S, yi ̸= yk}.

In the original work, the neighborhood is defined using the Eu-
clidian distance, and thus, assumes the elements lives in a vector
space. To avoid this, the method presented in this paper defines
the neighborhood based on set intersections to derive D and
R. The PSD matrix W is found by solving the following convex
optimization problem:

M∗ = argmin
M∈Sn

+

(1− µ)
∑

(xi,xj)∈S

d2M (xi, xj)+ µ
∑
i,j,k

εi,j,k

s.t. d2M (xi, xk)− d2M (xk, xj) ≥ 1− εi,j,k,∀(xi, xj, xk) ∈ R
εi,j,k > 0

(7)

A. Quemy / Information Systems 85 (2019) 92–113 95

with µ ∈ [0, 1] a tradeoff parameter, and εi,j,k some slack
variables.

OASIS [23] learns a bilinear similarity metric of the form
dM (x, x′) = xTMx′ without the PSD constraint on M . It can define
similarity between instances of different dimensions such as Bag-
of-Words. Relaxing the PSD constraint allows the author to use an
efficient online Passive-Aggressive algorithm [24] to solve for M:

M t
= argmin

M, ε

1
2
∥M −M t−1

∥
2
F + Cε

s.t. 1− d2M (xi, xj)+ d2M (xi, xk) ≤ ε

ε > 0

(8)

with C a regularization factor and ∥.∥F the Frobenius norm.
Similarly,HCBR works with input vectors of different dimensions.
The iterative form of the optimization program is close to the
training phase introduced in Section 3.4

SLLC [25] focuses on learning a bilinear similarity matrix as a
quadratic constraint program defined by

min
M∈Rn×n

1
n

n∑
i=1

ℓhinge(1− yi
1

γ |S|

∑
xj∈D

yjdM (xi, xj))+ β∥M∥2F (9)

where D is a sample from the training set, γ a margin parameter
and β a regularization parameter. The objective of SLLS is to find
a metric s.t. the elements of one class are in average more similar
than the elements of the other class by a margin γ . The idea
behind HCBR is similar except that it learns one seminorm per
class such that we can impose to calibrate the distance (i.e. the
distance is a confidence measure) over the training set rather than
having an average distance parameter. Also, the seminorms are
parametrized by a vector and not a matrix.

MMDA [26] learns the Euclidian distance between W Txi and
W Txj and thus is a linear method. To do so, it learns k projec-
tion hyperplanes {wr}

k
r=1 by solving the following optimization

program:

min
W ,b,εr

1
2

k∑
r=1

∥wr∥
2
2 +

C
n

k∑
r=1

n∑
i=1

εri

s.t. ℓhinge(wT
r xi + bi) ≤ 1− εri

εri > 0

W TW = Id

(10)

where εr are slack variables to penalize margins and C a regu-
larization parameter. HCBR adopts the opposite direction: it gives
explicitly a projection per xi and tries to find a vector µ such that
the sum of hinge loss ℓhinge(wT

i µ) is minimized over the training
set.

LSMD [27] learns a non-linear projection GW parametrized
by W s.t. d(x, x′) = ∥GW (x) − GW (x′)∥1 is small when the x
and x′ are in the same class and large otherwise. The parameter
W represents the weights of a neural network used to learn
the projections. HCBR also learns a non-linear projection but
such that the sign indicates the class and the distance to 0 the
confidence in this class. Therefore, a small distance between two
elements does not indicate the same class but the same level of
confidence.

The method proposed in this paper is not a pairwise metric
learning method. However, many similarities exist as it needs
a proxy to express non-numerical data in a numerical decision
space s.t. a simple decision rule well performs. What is learnt is
a seminorm per class, representing the distribution of discrim-
inative information to support this class w.r.t. the interactions
between the training set examples. The pairwise metric can be

artificially defined using the pseudo-norms but is never directly
used in the current state of the method.

According to the usual taxonomy of metric learning meth-
ods [18,20], HCBR can be viewed as a fully-supervised, non-
linear and global5 metric learner algorithm dedicated to clas-
sification on non-vector space. The dimensionality reduction is
implicitly defined by the hypergraph representation. The liter-
ature work on non-numerical data mostly focused on distance
between strings [28] and trees [29,30], with a problem of combi-
natorial explosion. The scalability study in Section 3.6 shows this
is not the case with HCBR.

2.3.2. Data wrangling and missing data
Data wrangling consists in selecting, transforming and curat-

ing data that are unstructured or not suitable for the selected
algorithm. It is commonly accepted that up to 80% of data sci-
entists time is spent on data wrangling [31]. On top of the time
consumption, the whole preprocessing step has a huge impact on
the final model quality. For instance, in [32], the authors showed
that the accuracy obtained by Neural Network, SVM and Decision
Trees are significantly impacted by data scaling, sampling and
encoding. For a more comprehensive view on data processing
impact, we refer the reader to [33].

Data wrangling offers several challenges notably dealing with
missing data and outliers or combining data frommultiple sources
in an automated way [34,35]. In this section, we present the work
related to those challenges. However, we believe that another
way to tackle data wrangling challenges is to design models
that are less sensitive to data preprocessing, missing data or
data representation. Not only it decreases the time allocation
needed to create efficient data pipelines, but it also decreases the
CPU time by shrinking the data pipeline itself. For instance, the
method proposed in this paper does not need to remove outliers
because they will be marginalized by the model selection itself.
As HCBR works with any unstructured space, it becomes easy
to combine data from multiple sources. Despite intelligent data
transformation might increase the overall performances, we show
in Section 4.3.2 that it is not a requirement to perform well.

Modeling datasets in a latent space using meta-features allows
to predict the impact of preprocessing operators on the model
accuracy [36]. To merge multiple data sources semi-automated
tools exists such a Clio [37] or Schema Mapper [38]. For knowl-
edge discovery, SeeDB [39] automatically generates useful visu-
alization of data relations that can help to perform feature selec-
tion. Recently, [40] proposed a fully automated way of building
data pipelines using standard hyperparameter tuning techniques.
The approach still involves a large CPU time overhead.

The most common technique to deal with missing value is
replacing the value (imputation) using the mode, average or a
value obtained by a model, over the available data. The impu-
tation might be done using a k-nearest neighbors algorithm [41],
local regression [42] or Random Forest [43]. In general, machine
learning approaches tend to outperform traditional statistical
methods [44]. To handle values under missing at random (MAR)
settings, one can use multiple imputations [45,46]. However, this
technique requires to generate several variations of the training
set and build several models that are then averaged s.t. once
again, it requires a large computational effort.

Even when values are missing completely at random (MCAR),
there are scalability issues with practical machine learning. As-
sume some values are MCAR (e.g. due to a defective sensor

5 In this paper, we use the notion of locality in a different meaning than in
the metric learning community. The locality of our model expresses the fact the
model cannot be used outside of a certain neighborhood, but the metric has
been defined using the entire training set.

96 A. Quemy / Information Systems 85 (2019) 92–113

for some time), or that new pieces of information are available
after an initial model was built (e.g. adding new sensors). In the
case of linear classification, e.g. in R3, if an element has only 2
components it does not describe a point but a plane and as a
result, there is no way to separate it with a (hyper)plane.

Conversely, consider a model built in R2 with some additional
information available afterward, s.t. the classification instance
now lives in R3. Mathematically, there is no guarantee that the
model in two dimensions is even close to the model built from
scratch in three dimensions. For instance, if the points are not
linearly separable in two dimensions but are in three dimen-
sions, there is no chance for the projection of the plane into
the subspace of two dimensions to be the model found while
working only in this subspace. Despite multiple algorithms have
an online counterpart, as far as we know, there is no significant
work on having this horizontal scalability (as opposed to vertical
scalability). One step toward horizontal scalability is to work with
unstructured spaces as proposed in this paper.

2.4. Classification and hypergraph

Hypergraphs generalize graphs and can be used to represent
higher order relations while graphs are limited to binary rela-
tions. A hypergraph is defined by a set of vertices and a collection
of hyperedges where each hyperedge is a subset of this set of
vertices. Therefore, a graph is a special case of hypergraph for
which each hyperedge contains only two vertices. We will for-
mally introduce hypergraphs in Section 3.1. Recently hypergraphs
have been used as data representation, and some classification
algorithms on hypergraph have been proposed. A vast majority
of approaches models the objects to classify as the set of vertices
and constructs the hyperedges as the representation of a met-
ric. This conventional approach is known as neighborhood-based
hypergraph. The metric relies on some assumptions on the data
or a specific representation (e.g. Zernike moment and histogram
of oriented gradient to measure the distance between images
in [47]) and for each vertex, a hyperedge is created to represent
its k-nearest neighbors [48].

The problem of classification on hypergraph consists in label-
ing some unlabeled vertices given a training set such that all
vertices in a same hyperedge have the same label. As all the
vertices are known a priori, the problem is part of transductive
learning. To learn the labels, the standard approach is to minimize
a cost function based on a hypergraph equivalent of a graph
Laplacian [47,49] with a structural risk:

C(x) = xt∆x+ µ∥x− y∥2 (11)

where ∆ is the hypergraph Laplacian, µ > 0 a regularization
factor and ∥.∥ a norm. The vector y represents the initial labels
for all vertices with yi = 0 for unlabeled vertices, a negative (resp.
positive) value for label -1 or 1.

On the contrary, the method proposed in this paper models
the elements to classify as the hyperedges and the vertices as the
different components of those elements. As far as we know, there
is no previous work that uses this modeling choice. In addition,
it does not require knowing all the elements before building
the model: our approach is inductive. More important, as most
previous work consists in building metrics based on the feature
representation, it obviously conflicts with our goal of agnosticity
described in the previous section.

2.5. Binary classification in unstructured spaces

With all the considerations of Section 2.3 in mind, we reformu-
late the problem of binary classification for unstructured space.
The only ad-hoc operation we allow is checking if a particular

feature belongs to the element to classify, and by extension we
allow elementary set operations. We consider a countable space
F and define X = 2F. By abuse of notation, we call x ∈ X an
‘‘vector’’ despite X is not a vector space. We also refer to x as
a case. In practice, it is very likely that only a subset of 2F may
appear (for instance if two features encode two contradictory
propositions or if every case has the same number of features).
The real class for any input vector x of 2F is given by the mapping:

J: 2F → {−1, 1}
x ↦→ J(x)

(12)

Assuming the unknown mapping takes value from the powerset
of F allows us not to have to know F at all. Concretely, the ele-
ments of F can take different forms depending on the data: a pair
‘‘variable = value", a word, a proposition that is true or false, etc.
The only minimal requirement is that there exists a way to index
the data elements. In the experimental validation performed in
Section 4, the datasets are structured (with some missing values)
and thus, the features are all represented by a pair ‘‘variable =
value". In Section 5, the features are represented by ‘‘word =
occurrences" if a word appears at least once. However, as F can
be seen as a subset of N, the method presented below would
work on datasets mixing representations (descriptive features,
Bag-of-Words, etc.).

Notice that in this paper we do not consider uncertainty: if two
situations are described the same in F, then they have the same
label.

3. Hypergraph case-based reasoning

In this section, we introduce our main contribution with a new
framework for binary classification in unstructured spaces
called Hypergraph Case-Based Reasoning (HCBR). The presenta-
tion is broken down into five steps. First, we present in Section 3.1
how to represent our training set as a hypergraph and how to
project any element of 2F onto it. Those elements allow us to
formally define the model space in Section 3.2. Section 3.3 is
dedicated to parameter estimations while Section 3.4 focuses on
the training. Finally, Section 3.5 is dedicated to the decision rule
refinement and hyperparameters. Section 3.6 provides the time
complexity of the main phases of the algorithm.

3.1. Representation and projection

Before defining the projection operator used by HCBR to
make predictions, we recall the definition of a hypergraph. For
additional results on hypergraphs, we refer the reader to [50].

Definition 3.1 (Hypergraph). A hypergraph is defined by H =
(V ,X) with V a set of vertices, X the hyperedges s.t. ∀x ∈ X, x ⊆
V .

A hypergraph can be viewed as a collection of subsets X of
a given set of vertices V . It is sometimes convenient to define a
hypergraph solely by a collection of sets. In this case, the set of
vertices, denoted VX, is implicitly defined as the union of edges.

A training set X can be seen as a hypergraph H = (F,X),
i.e. such that each example is a hyperedge (Fig. 1). In practice,
we do not need to know F as we can always use the implicit
hypergraph H = (FX,X) where FX is the restriction of F to the
features present in the sample X. For structured datasets, the
elements of FX are all the distinct pairs ‘‘variable=value" in X.
For any hypergraph H = (FX,X), there exists a unique partition
EH = {ei}Mi=1, ∀1 ≤ i ≤ M, ei ⊆ FX defined by the intersections
of its edges as illustrated by Fig. 1.

The projection of a case over a hypergraph returns the ele-
ments of EH it intersects with.

A. Quemy / Information Systems 85 (2019) 92–113 97

Fig. 1. The family E = {ei}i forms the partition obtained by the union of the
projection of cases and represents how the three cases share information.

Definition 3.2 (Projection Over a Hypergraph). The projection op-
erator πH over a hypergraph H = (V ,X) for any A ⊆ V is defined
by πH (A) = {e ∈ EH | e ∩ x ̸= ∅}.

Example 1. Each element of πH (x) is a (sub)set of features. For
instance, in Fig. 1, πH (x1) = {e1, e2, e3, e6} and in Fig. 2, the
projection of x (in yellow) on H is the whole partition EH as x
intersects with every e ∈ EH .

We call discretionary features of x (w.r.t. H) the (possibly
empty) set of features that are not in VX, denoted Dx. It can
be interpreted as the features of x that do not belong to any
hyperedge. When adding hyperedges, the discretionary features
of x are new pieces of information that were never encountered
before.

Example. Considering the hypergraph composed of x1 and x2 as
illustrated by Fig. 1, the set of discretionary features of x3 is e4.
In Fig. 2, the yellow case x has no discretionary feature: all its
features are present at least in one example.

For any set of features x ⊆ F, we define dH (x) = {x′ ∈ X |
x ∩ x′ ̸= ∅} the set of edges sharing some features with x. In
particular, the set dH can be split into d(1)H and d(−1)H depending on
the label of the case, and defined by d(l)H (x) = {x′ ∈ dH (x) | J(x′) =
l}. Note that if x ̸∈ X and |dH (x)| = 0, then x = Dx, i.e. the case x is
in relation with no case in X. In the hypergraph literature, |d(x)|
is called the degree of a hyperedge and its domain of definition
is restricted to X while here, it is extended to 2F. Finally, to use
matricial notations, we define the vectors dl

= (|d(l)(xi)|)Ni=1.
From now, we consider only the specific hypergraph generated

by the set of examples X. For the sake of readability, we remove
the subscript H .

3.2. Model space

As discussed in Section 2.3, we relaxed some implicit con-
straints on the input vector space. As a counterpart, HCBR relies
on the assumption that if two input vectors x and x′ do not share
any feature, they are independent i.e. x cannot help to understand
the correct class of x′ and vice versa. This limitation comes from
the fact there is no metric on F to determine a distance between
two elements s.t. we can rely only on intersections. As a result,
HCBR produces only local models because if a new input vector
is independent of all examples, it is impossible to generate a
prediction. On the contrary, a hyperplane model is global in a
sense that it can produce a prediction for any element of RM . We
discuss and propose a solution to this issue in Section 7.3.

An example of concrete situation for which such assumption
is natural is a justice trial. Cases are composed of some elements,

and the correct label is the result of a reasoning that can possibly
use analogies or counter-examples with a set of past cases on top
of the legal texts. However, if a judge or lawyer wants to use x to
justify the outcome of x′, x′ must have similarities with x.

First, we give the intuition behind our model space. For each
element ei in the projection, we value (1) its importance in the
case x and (2) its support toward a specific class given the whole
hypergraph. Intuitively, (1) consists in answering the question:
how important is ei w.r.t. x? or what is the potential for analogies or
counter-examples between x and the other examples also containing
ei? The purpose of (2) is to value how important is ei with regards
to the other elements of E . For instance, to explain the case x1 in
Fig. 1, we will use only the elements of the projection πH (x1) =
{e1, e2, e3, e6}. Without prior information, we will use the size
of ei in x to measure their importance x. The way of measuring
the support with regard to the whole hypergraph as well as an
intuitive interpretation will be given in Section 3.3.

Let us now formally define the model space. Given the hyper-
graph H = (F,X) defined by a training set X and its associated
partition E = {ei}mi=1, the relation between an example x and its
class is modeled by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sw,µ(xj) =

M∑
i=1

w(ei, xj)µ(ei,X, y)

M∑
i=1

w(ei, xj) = 1 ∀1 ≤ j ≤ N

M∑
i=1

µ(ei,X, y) = 1

(13)

where w(ei, xj) ≥ 0 models the importance of ei in xj and
µ(ei,X, y) the support of ei for class 1 w.r.t. whole training set.
For this reason, we call µ the intrinsic strength of ei. The above-
mentioned assumption implies that if ei∩x = ∅ then w(ei, x) = 0.
For readability, we write s in place of sw,µ.

The classification rule consists in selecting the class with the
total highest support:

J̄w,µ(x) =
{

1 sw,µ(x) > 0
−1 sw,µ(x) ≤ 0 (R1)

The classification problem consists then in finding the couple
(w, µ) that minimizes the classification error:

(w∗, µ∗) = argmin
w,µ

∑
(x,y)∈(X,y)

I{y̸=J̄(x)} (14)

The problem described by (14) is a functional problem, in general
much harder than parametric ones such as (5), and without re-
strictions on the search space it may not be reasonable to look for
a solution. For this reason, and for the rest of this paper, we will
fix w a priori. As we do not formulate any particular assumption
on the feature space and allow only basic set operations, a natural
yet trivial way to model the importance of ei in xj is to set
w(ei, xj) =

|xj∩ei|
|xj|

. However, if one has some information about
the impact of some features in some particular cases, w might be
redefined to integrate this prior knowledge.

Once the method to calculate w and µ is specified, the model
can be expressed matricially by⎧⎨⎩ s = Wµ W ∈M(R)N×M , µ ∈ RM

∥wj:∥1 = 1 ∀1 ≤ j ≤ N
∥µ∥1 = 1

(15)

By setting dµ(x, x′) = |s(x)− s(x′)|, we can see the problem as
learning a metric parametrized by µ s.t. the training set elements
are properly classified. Rather than learning directly µ, we split
it into µ(1) and µ(−1), representing the distribution of the support
toward class −1 and 1 over E .

98 A. Quemy / Information Systems 85 (2019) 92–113

Fig. 2. The projection of x (in yellow) on H is the set of ei intersecting with it. On the right, the graph represents the projection elements {ei}i and their respective
connections to the cases {xi}i , in particular, Dx = ∅. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

To fit a model capable of generalization, it is not enough to
simply select µ s.t. it minimizes the classification error. Assuming
W is fixed and s set to some arbitrary values s.t. each example
is correctly classified, µ can be obtained by using the Moore–
Penrose pseudo-inverse ofW . The Moore–Penrose pseudo-inverse
generalizes the inverse for non-square matrix. It always exists
and is unique. Depending on s and W , it might be impossible
to classify correctly all the elements using µ = W+s. However,
by construction of the Moore–Penrose pseudo-inverse, W+s is
a least-square minimizer of s = Wµ. If this system has many
solutions, W+s is the solution with the lowest norm ∥.∥2.

By artificially setting s to obtain µ with the Moore–Penrose
inverse, the constructed model holds no discriminative infor-
mation and there is no chance it can provide good results on
new cases. For this reason, µ has to be designed such that s
is calibrated, i.e. the higher s is, the more confident the model
is about the prediction. Ideally, among all the elements with
e.g. a (normalized) strength close to 0.8, 80% of them should be
correctly classified.

To summarize, after defining a general model space to solve
the binary classification problem in unstructured space, we made
additional assumptions to reduce the problem of model selection
to find a vector µ s.t. the classification rule (R1) provides a good
solution to the original problem (1). For this purpose, we will
proceed in three steps:

• Step 1: Define µ to capture as much information as possible
from E for any X (Section 3.3).
• Step 2: Train the model to adjust µ on a specific X using the

classification rule (R1) (Section 3.4).
• Step 3: Refine the classification rule (R1) to take into account

the local nature of the model (Section 3.5). The refined
classification rule (R2) is presented in Section 3.5.

A summary and high level view of HCBR is given by Algorithm 1.

Algorithm 1 HCBR (High level view)

1: Build H and E from X.
2: Calculate w and µ on E .
3: Adjust µ with training algorithm 2 on X using rule (R1)
4: for each x in the test set do
5: Calculate the projection π (x).
6: Calculate the support s(x) using the projection.
7: Predict using the refined rule (R2).
8: end for

While SVM aims at separating the data using a single hyper-
plane in the original input vector space, HCBR tries to explain
the decision for each case by a convex combination expressed in
a lower dimensional space E .

3.3. Step 1 — Model selection

In this section, we define how to concretely select µ for a
given hypergraph. Ultimately, µ is a measure over FX directly,
and cannot be interpreted as a probability: FX ∈ 2FX but by
definition of Eq. (13), µ(FX) = 1. However, there is absolutely no
reason to think that J(FX) = 1. Our definition of µ tries to answer
the following question: knowing a certain amount of information
materialized by the intersection family E , where are located the
features holding more discriminative information than the others?
Once again, with further information about the features, a prior
might be introduced to select µ.

For x and x′ in 2F, a basic quantitative measure on the impor-
tance of x′ w.r.t. x can be expressed by |x∩x

′
|

|x| , i.e. how much x′
overlaps with x. This measure is a sort of potential for an analogy
with x. Potential because it does not account for the individual
importance of the features and simply holds the idea that the
larger is a subset of features in a case, the higher is the chance it
holds important features to decide the outcome.

Let us consider E and an example x ∈ X.

Definition 3.3 (Intrinsic Strength w.r.t. x). The intrinsic strength of
e ∈ E w.r.t. x ∈ X is defined by

∀l ∈ {−1, 1}, S̄(l)(e, x) =
|d(l)(e)| |x∩e|

|x|∑
ej∈E
|d(l)(ej)|

|x∩ej|
|x|

=
|d(l)(e)||x ∩ e|∑

ej∈E
|d(l)(ej)||x ∩ ej|

(16)

Matricially, for any ei and xj,

S̄(l)i,j =
d(l)i wji

⟨d(l),w:i⟩
(17)

In particular, for a given x ∈ X, S̄(l)(ei, x) = 0 if ei is not part of
the projection of x on H .

The more ei belongs to many cases with the same class l and
the higher S̄(l)(ei, x) is. Conversely, for a fixed number of cases, the
more ei describes x, the higher S̄(l)(ei, x) is. As ∀ei ∈ E, |d(ei)| > 0,
either we have S̄(1)(ei, x) ̸= 0 or S̄(−1)(ei, x) ̸= 0. We have
S̄(l)(ei, x) = 0 only when all the cases in which ei results of are
labeled with the opposite class l̄. For S̄(l)(ei, x) = 1, it needs both
the unanimity of labels for the cases in which ei belongs to and
that ei = x. The relation ei = x implies that x does not share any
feature with any other example or that x is included into another
example.

A. Quemy / Information Systems 85 (2019) 92–113 99

Definition 3.4 (Intrinsic Strength w.r.t. a Hypergraph H). The
intrinsic strength of e ∈ E w.r.t. H = (FX,X) is defined by

∀l ∈ {−1, 1}, S(l)(e) =
|e|∑

e′∈E |e′|

∑
x∈d(l)(e)

S̄(l)(e, x)

=
|e|
|FX|

∑
x∈d(l)(e)

S̄(l)(e, x)
(18)

Matricially, for any ei,

S(l)i =
|e|
|FX|
∥S(l)i: ∥1 (19)

The more e belongs to several cases, the more information it
represents to support a class or another. As E represents the sets
of features that appear all the time together, we favor the larger
e ∈ E as they hold more information to explain a decision. The
normalized version is defined by:

∀l ∈ {−1, 1}, µ(l)(e) =
S(l)(e)∑

e′∈ES(l)(e′)
(20)

Finally, the measure µ is simply defined by the difference
between the strength of both classes:

µ(e) = µ(1)(e)− µ(−1)(e) (21)

which can be expressed matricially for a given ei by

µi =
|ei|
|FX|

[S(1)i

∥S(1)∥1
−

S(−1)i

∥S(−1)∥1

]
(22)

Example (Numerical Example). Consider the hypergraph in Fig. 1
made of x1, x2 and x3 arbitrarily labeled with resp. 1, −1 and
1. Arbitrarily, we assume the cardinal of the elements of E to be
#e = (2, 1, 2, 3, 1, 2, 3) s.t. the cardinal of cases are #x = (7, 8, 7)
and |FX| = 14. The values of |d(l)(e)| can be summarized by the
vectors d(−1)

= (0, 0, 1, 0, 1, 1, 1) and d(1)
= (1, 2, 2, 1, 1, 1, 0).

Let us calculate S(−1)(e3):

S̄(1)(e3, x1) =
2× 2

2× 1+ 1× 2+ 2× 2+ 1× 2
=

4
10

S̄(1)(e3, x2) =
2× 2

2× 2+ 1× 1+ 1× 2+ 0× 3
=

4
7

S̄(1)(e3, x3) =
2× 2

2× 1+ 2× 2+ 3× 1+ 1× 1
=

4
10

which we interpret as e3 being responsible for 4
10 of the support

toward class 1 in x1 and x3, while 4
7 for x2. This leads to

S(1)(e3) =
2
14

[4
10
+

4
7
+

4
10

]
≃ 0.1959

Similarly, we compute the support for each e and both labels.
We summarize this into the following vectors:

S(1) ≃ (0.0286, 0.0286, 0.1959, 0.0643, 0.0173, 0.0694, 0.0000)

S(−1) ≃ (0.0000, 0.0000, 0.2024, 0.0000, 0.0327, 0.1071, 0.0000)

After normalization, we obtain the intrinsic strength:

µ ≃ (0.0707, 0.0707, 0.0060, 0.1591,−0.0345,−0.0818,−0.1901)T

Let us evaluate the model on the three examples:

s(x1) =
2
7
µ(e1)+

1
7
µ(e2)+

2
7
µ(e3)+

2
7
µ(e6) ≃ 0.0086

s(x2) =
2
8
µ(e3)+

1
8
µ(e5)+

2
8
µ(e6)+

3
8
µ(e7) ≃ −0.0946

s(x3) =
1
7
µ(e2)+

2
7
µ(e3)+

3
7
µ(e4)+

1
7
µ(e5) ≃ 0.0751

As a result, x1 and x3 are labeled 1 and x2 is labeled −1. All three
cases are correctly labeled. The highest support is given for case
x2 and x3 while the support for x1 is one order of magnitude
lower than for x3. This is because the discretionary features of
x3 are larger while the intersection with x2 is lower than for x1
(38 of x3 against 4

7 of x1).
Consider a new case x as described in Fig. 2. Its support is given

by s(x) =
∑

e∈π (x)
w(e, x)µ(e) with π (x) = {e1, e2, e3, e5, e6, e7}.

It is impossible for x to be classified as 1 because the highest
support would be for a maximal intersection with e1, e2, e3 and
minimal for e5, e6 and e7 s.t. s(x) = 1

8 (2µ(e1)+µ(e2)+ 2µ(e3)+
µ(e5)+µ(e6)+µ(e7)) ≃ −0.0103 < 0. It can be explained by the
fact that the support for 1 is provided by a larger set of features
(11 features versus (8). On top of that, the intersections between
positive cases (e2 and e3) are too small (1 for e2 compared to e.g. 3
for e7) or include also negative cases (e3).

Example (Car Accident). We are interested in knowing if a driver
is responsible for an accident involving a pedestrian. From the
past cases and the considered case, we collected seven facts:
(1) the driver was not speeding, (2) the driver was speeding,
(3) the pedestrian was outside the crosswalk, (4) the driver was
drunk, (5) the accident happened at night, (6) the driver was a
young driver, (7) the accident happened on the highway, (8) the
crosswalk light was red.

To simplify, we assume two past cases: x1 = {2, 4, 5, 7},
x2 = {1, 3, 5, 6} with y1 = 1, y2 = −1. We are interested in
y3 knowing x3 = {2, 5, 6, 8}. The partition is given by E = {e1 =
{2, 4, 7}, e2 = {5, 6}, e3 = {1, 3}}. In particular, π (x3) = {e1, e2}.

We assume µ(1)
= (0.75, 0.25, 0) and µ(−1)

= (0, 0.3, 0.7) s.t.
after normalization µ = (0.5,−0.03,−0.46).

s(x3) = w(e1, x3)µ1 + w(e2, x3)µ2

=
1
4
0.5−

1
2
0.03 = 0.11 > 0

The model concludes that the driver is guilty. The fact the cross-
walk light was red is not taken into account. The decision can
be explained mostly by the features of e1. The elements of e2 are
not discriminative enough to reverse the judgment. If the driver’s
lawyer would highlight the fact his client is not responsible be-
cause of the outcome of x2 and the fact it shares many similarities,
the defense could argue that the main reason y2 = −1 holds in
e3. By building a chain of analogies and counter-examples, each
decision can be explained w.r.t. past cases.

3.4. Step 2 — Training

At this stage, it is already possible to generate predictions for
new cases. However, the intrinsic strength vector calculated on
the hypergraph might not be perfectly accurate on the training
set because of the lack of information contained in the train-
ing set (or some limitations on the model space itself that we
will discuss in Section 6). In this section, we give an algorithm
to adjust the intrinsic strength in order to correct the initial
estimation.

Once the model is built, it can be evaluated on the training
set. Analogously to SVM, we define the margin as the distance
to the correct class, i.e. m(w, µ, x) = J(x)sw,µ(x). To improve
the pertinence of the strength of the elements of E , we use the
iterative algorithm described by Algorithm 2 to minimize the
total margin over the training set X.

The order in which points are considered is fixed in the current
implementation. When a decision is incorrect for x, the algorithm
modifies each element of the projection by lowering its strength

100 A. Quemy / Information Systems 85 (2019) 92–113

Algorithm 2 Model training
Input:
- X: training set
- y: correct labels for X
- k: number of training iterations
- µ(1), µ(−1): weights calculated with (3.4)

Output:
- Modified vectors µ(1), µ(−1)

1: for k iterations do
2: for xi ∈ X do
3: ȳi ← J̄(xi)
4: if ȳi ̸= yi then
5: for e ∈ π (xi) do
6: µ(yi)(e)← µ(yi)(e)+ w(e, xi)|µ(e)|
7: µ(ȳi)(e)← µ(ȳi)(e)− w(e, xi)|µ(e)|
8: end for
9: end if

10: end for
11: end for

for the wrong class and increasing it for the proper class. The
margin is split between the element of the projection w.r.t. their
respective weight in x i.e. w(e, x). If a case x is wrongly classified,
it is due to the cases intersecting with it. Indeed, if x was not
intersecting with any other example, its projection would be
itself, and its support toward the wrong class would be 0 and
positive for the real class. In other words, x would be correctly
classified. Thus, the idea is not to directly bring the support of x
to the correct class but to gradually adjust the weights s.t. the
neighbors are modified enough for x to be correctly classified.
In particular, it is sensitive to the order in which the cases are
considered: a modification in the strength of any e ∈ E impacts
all cases in which it appears and potentially changes the predicted
class for those cases.

The update rule being a contracting mapping because |µ(e)| <
1 at the initial step and w(e, xi) < 1 unconditionally, Algorithm 2
is guaranteed to converge. A more formal justification can be
found in the Additional Material, Section 1. However, too many
iterations may lead to overfitting µ to the training set. Empirical
experiments suggest that the result after one to five training
iterations is (near-)optimal (see Section 6).

3.5. Step 3 — Decision rule refinement

This step is not mandatory in a sense that the model can
be built and already generates predictions. The hyperparameters
introduced in this section can help either to increase prediction
accuracy (see Section 4.3.1) or control the risk associated to a
prediction (see Section 6.3).

The measure µ is defined as the difference of support for both
classes. Thus, by linearity we can rewrite

s(x) =
M∑
i=1

w(ei, x)µ(1)(ei)−
M∑
i=1

w(ei, x)µ(−1)(ei)

= s(1)(x)− s(−1)(x)

(23)

This form is convenient because we can control how much ev-
idence we need to support a specific class using the following
constraints and a family η of four hyperparameters:

s(−1)(x) > max(
η̄−1

1− η̄−1
s(−1)(x), η−1) ≥ 0 (C0)

s(1)(x) > max(
η̄1

1− η̄1
s(−1)(x), η1) ≥ 0 (C1)

Fig. 3. Representation of the updated decision rule (R2) in the extended decision
space.

with η−1, η1 ∈ R+ and η̄−1, η̄1 ∈ [0, 1]. The constraints on η−1
and η1 define a minimal amount of support respectively toward
class −1 and 1 while η̄−1 and η̄1 requires the support toward
a class to be significantly higher than the support for the other
class. As µ is normalized over E , the value of η−1 and η1 must be
set w.r.t. the hypergraph. On the contrary, η̄1 and η̄0 can be set
independently of the hypergraph.

Those constraints may be used to design a decision rule for
new cases depending on the application or the dataset. The most
generic decision rule is as follows:

J̃(x) =

⎧⎪⎨⎪⎩
1 s(x) > 0 and C1
−1 s(x) ≤ 0 and C0
l1 s(x) > 0 and not C1
l−1 s(x) ≤ 0 and not C0

(R2)

where l−1, l0 are two labels. A representation is given by Fig. 3.
Those hyperparameters are intended to model the ‘‘burden of
proof’’. For instance, in a trial, one is assumed innocent until
proven guilty which implies the support for the class ‘‘guilty’’
must be beyond a reasonable doubt (where the term reasonable
is defined by the jurisprudence of the applicable country). In case
η−1 = η1 = η̄−1 = η̄1 (and l−1 = 0 and l1 = 1), then the decision
rule is equivalent to the original one defined by (R1).

3.6. Time complexity

Model building. Given X ∈ (2F)N , constructing EH can be done
in O(

∑
x∈X
|x|) by using a Partition Refinement data structure [51].

Given x ∈ X, calculating the family {S̄(e, x)}e∈EH can be done
in O(|x|) by asking for each feature of x the e it belongs to and
maintaining the size of each e during the construction of EH . Thus,
calculating {S̄(e, x)}e∈EH for all x ∈ X can be done in O(

∑
x∈X
|x|).

On m-uniform hypergraphs (when all cases are described with m
features), it becomes O(mN).

Calculating {S(e)}e∈EH and µ can be done in O(|EH |) because
it requires to iterate over EH . An obvious upper bound on |EH |
is |FX| i.e. the number of vertices in the hypergraph. The worst-
case cardinal of EH is when each x ∈ X intersects with all the
others and none of them is strictly a subset of any other. Thus,
|EH | ≤ min(2N

− 1, |FX|).

Learning phase. For each wrongly classified x ∈ X, a training it-
eration requires at most O(|x|) steps (maximal cardinal for π (x)).
The worst-case scenario is when the model wrongly classifies
every x ∈ X. Thus, the learning phase worst-case complexity is
O(k

∑
x∈X
|x|) and on m-uniform hypergraphs it becomes O(kmN).

Model query. For a case x ∈ 2F, the projection can be done in
O(|x|). Calculating the classification rule also requires at most
O(|x|) (maximal cardinal for π (x)).

A. Quemy / Information Systems 85 (2019) 92–113 101

4. Experiments on structured datasets

In this section, we validate HCBR on well-known structured
datasets. Two series of experiments are performed. The first one
compares HCBR to the best results from the literature and in-
cludes hyperparameter tuning. The second one focuses on the ro-
bustness, i.e. the capacity to deliver good performances on a wide
range of datasets without spending time on feature engineering,
data preprocessing or hyperparameter tuning.

Some specific elements such as the learning curves or com-
puting times are discussed in Section 6 dedicated to intrinsic
performances and properties.

4.1. Data and method

We used seven structured datasets for binary classification.
All of them are available either from the UCI Machine Learning
Repository6 or provided with LIBSVM7: adult, breasts, heart,
mushrooms, phishing, skin and splice. For each dataset, the
original features (name=value) are converted into a unique
identifier and the union of all such identifiers constitutes the
information set F.

The datasets are described by Table 1. The minimal, maximal
and average size give information about the case sizes (notice
adult, heart and mushrooms datasets are missing values). The
column unique reports the cardinal of F. Two datasets have
at least one real-valued attribute as indicated by the column
‘‘Real’’. Three datasets (adult, breasts and skin) are highly
imbalanced.

For both experiments, we saved the confusion matrix obtained
over all runs and after each prediction. From this confusion ma-
trix, we calculated standard performance indicators: accuracy,
recall, specificity, precision, negative prediction value, F1-score
and Matthews correlation coefficient. Denoting by TP the number
of true positives, TN the true negatives, FP the false positives and
FN the false negative, the accuracy, the F1-score and Matthews
correlation coefficient (MCC) are defined by:

ACC =
TP+ TN

TP+ TN+ FP+ FN

F1 =
2TP

2TP+ FP+ FN

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

The accuracy, F1-score and MCC respectively belongs to [0, 1],
[0, 1] and [−1, 1]. The closer to 1, the better it is. F1-score and
MCC take into account false positive and false negatives. Further-
more, MCC has been shown to be more informative than other
metrics derived from the confusion matrix [52], in particular with
imbalanced datasets.

4.1.1. Experiment 1 — Literature comparison
The objective is to compare HCBR performance to the best

results from the literature. As most studies do not report F1-score
nor MCC, we will base our comparison on the accuracy.

We used a 10-fold cross-validation with stratified sample to
preserve the original dataset prevalence. The number of training
steps k was adjusted with a manual trial-and-error approach.

To measure the impact of hyperparameters on HCBR, the
runs have been performed twice (with the same seed). The first

6 https://archive.ics.uci.edu/ml/index.php.
7 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

campaign was done with the family η sets to η−1 = η1 = η̄−1 =

η̄1 = 0. The second one was done with a nested 10-fold cross-
validation in order to tune hyperparameters. The training set was
itself divided into 10 folds. The first nine folds were used to build
and train the model, the last one used as validation set to find the
optimal values for the family η. On the test set, we used for η the
average values found over the 10 validation sets.

It is difficult to know in advance the range of values for the
components of µ such that setting a grid is not convenient.
Instead, we define a hyperparameter space that depends on the
strength expressed in the decision defined by Fig. 3. Consider the
upper half-plane of this space, i.e. the points with positive sup-
port. The hyperparameters can define a vertical split, horizontal
split or another (open) half-plane with a certain margin from the
axes. We performed an exhaustive search for the family η. We
describe here the procedure for cases with a positive support
i.e. to find η1 and η̄1. The procedure is symmetric for negative
support.

1. For each point (x, y) from the validation set, we considered
three points: p1 = (x + ε, y + ε̄), p2 = (x + ε, 0) and
p3 = (0, y + ε̄) where ε and ε̄ are positive or negative
depending on whether (x, y) is correctly classified or not
and set to half the distance to the immediate neighbor of
(x, y).

2. For each point of those three points, we recalculated the
accuracy when (η1, η̄1) is sets to pi

3. We choose the values that return the highest accuracy.

4.1.2. Experiment 2 — Robustness comparison
The state-of-the-art results obtained per dataset required a

lot of efforts in terms of feature engineering, as well as model
selection or hyperparameter tuning. As discussed in Section 2.3,
it represents nowadays most data scientists work and CPU time. If
well-calibrated models with high performances on their domain
of application is undeniably useful for practical usage, being able
to solve a problem on a large variety of instances without effort
is also of a vital importance, especially in the industry where the
end-user might not be specialized in data science and machine
learning. One main-challenge of large scale machine learning sys-
tems is thus to achieve the compromise between ready-to-deploy
models and good performance metrics.

There exist tools such as auto-sklearn [53] to automatically
tune hyperparameters and select the best algorithm in a given
portfolio. However, this approach still requires an extensive CPU
time which might be prohibitive in case end-users need to build
classification models over numerous datasets. For instance, one
may think to cloud offers such as IBM Cloud8 or Amazon AWS9
that create for their customers thousands of models from scratch
every day. Having models that give good results with limited
CPU time dedicated to feature engineering and hyperparameter
is thus an important competitive advantage. On top of that,
Automated Machine Learning is far from being widely adopted
in the industry where hyperparameter tuning might not even be
done for several reasons, as noted by [12] and confirmed by our
experience.

Therefore, we would like to quantify how good HCBR can
perform on different datasets without feature engineering or hy-
perparameter tuning. To measure this robustness, we performed
a 10-fold cross-validation for each of the seven selected datasets
using nine standard classification methods: AdaBoost, k-Nearest

8 https://www.ibm.com/cloud/.
9 https://aws.amazon.com/.

https://archive.ics.uci.edu/ml/index.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.ibm.com/cloud/
https://aws.amazon.com/

102 A. Quemy / Information Systems 85 (2019) 92–113

Table 1
Datasets description.

Cases Total features Unique Min. size Max. size Avg. size Real Prev.

adult 32561 418913 118 10 13 12.87 No 0.7586
breasts 699 5512 80 8 8 8 No 0.3338
heart 270 3165 344 12 13 12.99 Yes 0.5107
mushrooms 8124 162374 106 20 20 20 No 0.4804
phishing 11055 319787 808 29 29 29 No 0.5562
skin 245057 734403 768 3 3 3 Yes 0.2075
splice 3175 190263 237 60 60 60 No 0.5164

Neighbors, Linear SVM, Radius-Based Function (RBF) SVM, De-
cision Tree, Random Forest, Neural Network and Quadratic Dis-
criminant Analysis (QDA). The implementation is provided by
Scikit-Learn [54]. No hyperparameter tuning was performed and
the default values of parameters were used.

4.2. Previous work on the datasets

To compare the results of the proposed method, we explored
for each dataset the best results from the literature. The results
are summarized in Table 2. In [55], 5 rule-based classification
techniques dedicated to medical databases are compared and
achieve at best 95.85% and 82.96% accuracy resp. on breast, and
heart datasets. Comparing bayesian approaches, [56] demon-
strated 97.35% (breast) and 83.00% (heart) accuracy. A 5 layers
neural network with fuzzy inference rules achieved 87.78% on
heart [57] while a k-NN algorithm reached 99.96% on mush-
rooms [58]. The best alternative among 6 rules-based classi-
fication methods achieved 95.84% on breast and 100.00% on
mushroom [59]. Using 80% of phishing as training set, an adap-
tative neural network achieved an average accuracy of 93.76%
(among 6 alternatives) with the best run at 94.90% [60]. Still
on phishing,7881507 proposes to combine several classifiers
and reaches 97.75% accuracy for the best hybrid model (and
demonstrates 97.58% for Random Forest classifier). On adult,
the comparison of several classifiers (naive bayes, decision tree,
. . .) demonstrated at most 86.25% accuracy [61] while a Support
Vector Machine approach reached 85.35% [62]. On splice, a
method using Fuzzy Decision Trees [63] reaches 94.10% accu-
racy and a neural network combined to boosting [64] 97.54%.
On breast, Support Vector Machine approaches reached resp.
96.87%, 98.53%, 99.51% accuracy [65–67], 99.26% and 97.36% for
neural network based techniques [68,69], 98.1% for a bayesian
network method [70], or 94.74% using Decision Trees [71]. On
skin,catak2017 reports 98.94% accuracy against 99.68% for
Decision Tree based method [72]. The best result, as far as we
know, is 99.92%, obtained by a Generalized Linear Model [73].

4.3. Results

The integrality of the data used for the experiments, as well as
the scripts to transform them and analyze the results are available
within the HCBR Github repository10 s.t. the whole experimental
campaign starting from the raw data can be easily be reproduced.

4.3.1. Literature comparison
The average confusion matrix obtained for each dataset is

showed in the Additional Material, Section 2. The performance

10 https://github.com/aquemy/HCBR.

Table 2
Previous literature results measured as the highest accuracy obtained by the
authors.
Dataset Ref. Type Accuracy

adult

[61] Many classifiers 86.25%
[62] SVM 85.35%

HCBR (tuned) 82.90%
HCBR 82.06%

breast

[67] SVM 99.51%
[68] Neural Net 99.26%
[66] SVM 98.53%
[70] Bayes 98.1%

HCBR (tuned) 97.83%
[69] Neural Net 97.36%
[56] Bayes 97.35%

HCBR 96.96%
[65] SVM 96.87%
[55] Rule-based 95.85%
[59] Rule-based 95.84%
[71] Decision Tree 94.74%

heart

HCBR (tuned) 90.77%
[57] Neural Network + Rule-based 87.78%

HCBR 85.77%
[56] Bayes 83.00%
[55] Rule-based 82.96%

mushrooms
[59] Rule-Based 100.00%

HCBR 100.00%
[58] k-NN 99.96%

phishing

[74] Ensemble 97.75%
[74] Random-Forest 97.58%

HCBR (tuned) 96.82%
HCBR 96.05%

[60] Neural Net 94.90%

skin

[73] Generalized Linear Model 99.92%
[72] Decision Tree 99.68%
[64] Neural Network + Boosting 98.94%

HCBR (tuned) 98.68%
HCBR 98.65%

splice

[64] Neural Network + Boosting 97.54%
HCBR (tuned) 95.09%
HCBR 94.43%

[63] (fuzzy) Decision Tree 94.10%

indicators are reported in Table 3. The proposed algorithm per-
forms very well on a wide range of datasets as reported by the
Additional Material, Section 2 and Table 3.

Without hyperparameter tuning. The accuracy is contained in a
range from 0.8206 (adult) to 1 (mushrooms) while the F1-
score is bounded by 0.8653 (heart) and 1 (mushrooms). On
adult, the accuracy is only 6% higher than the prevalence, i.e. a
baseline model consisting in returning 1 for any point would be
only 6% worse. This relatively poor performance in learning the
underlying decision mapping is better reflected by the Matthews
correlation coefficient of 0.51.

The false positives and false negatives are equilibrated for each
dataset, despite a huge variation in the prevalence (between 20%
and 64%, cf. Table 1) which is a desirable property as it is known
to be a problem for many machine learning algorithms [75].

https://github.com/aquemy/HCBR

A. Quemy / Information Systems 85 (2019) 92–113 103

Table 3
Average performances obtained with a 10-fold cross-validation.

Accuracy (std dev.) Recall Specificity Precision Neg. Pred. Value F1 score MCC

adult 0.8206 (0.0094) 0.8832 0.6233 0.8808 0.6290 0.8820 0.5081
0.8290 (0.0063) 0.9008 0.6029 0.8773 0.6029 0.8889 0.5194

breasts 0.9696 (0.0345) 0.9691 0.9676 0.9479 0.9844 0.9575 0.9344
0.9783 (0.0204) 0.9553 0.9910 0.9833 0.9910 0.9691 0.9526

heart 0.8577 (0.0943) 0.8695 0.8437 0.8699 0.8531 0.8653 0.7178
0.9077 (0.0659) 0.9310 0.8783 0.9060 0.8783 0.9184 0.8126

mushrooms 1.0000 (0.0000) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

phishing 0.9605 (0.0081) 0.9680 0.9514 0.9615 0.9590 0.9647 0.9199
0.9682 (0.0067) 0.9689 0.9672 0.9741 0.9672 0.9715 0.9355

skin 0.9865 (0.0069) 0.9608 0.9932 0.9736 0.9898 0.9672 0.9587
0.9868 (0.0062) 0.9740 0.9900 0.9618 0.9900 0.9679 0.9596

splice 0.9443 (0.0124) 0.9478 0.9398 0.9450 0.9441 0.9463 0.8884
0.9509 (0.0108) 0.9478 0.9544 0.9577 0.9544 0.9527 0.9018

Fig. 4. Difference between the weight assigned to both classes for each decision on phishing and splice (average). Similar results are observed for all datasets.

Fig. 5. Histogram of decisions depending on the strength for phishing and splice. In blue the correctly classified elements, in red the wrongly classified ones.
The false positives and false negatives are concentrated around 0. Similar results are observed for all datasets. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The support is a metric of confidence for the prediction as
illustrated in Fig. 4. In general, the wrongly classified cases have
a smaller difference between the evidence for each class. This can
also be observed in Fig. 5.

HCBR performs the best on mushrooms and heart datasets.
For the rest, the accuracy is slightly lower than the best results
from the literature (adult 82.90% against 86.25%, breast 97.83%
against 99.51%, phishing 96.82% against 97.75%, splice 95.09%
against 97.54%, skin 98.68% against 99.92%). We explain this by
at least two factors. First, the best methods on a given dataset

are often dedicated to this dataset with ad-hoc or engineered
parts which is not the case of HCBR. Secondly, the learning curves
study in Section 6.2.1 reveals that the model space is not complex
enough. HCBR performed better than Bayes classifier in two thirds
of cases. Bayes classifier performs better on breast by approxi-
mately 1% which represents less than one case wrongly classified.
Similar results are observed with Decision Trees. However, the 1%
difference on skin represents an average of 7 cases misclassified
in comparison in favor of Bayes. It performs better than Rule-
based approaches (or gives similar results on mushrooms with

104 A. Quemy / Information Systems 85 (2019) 92–113

Fig. 6. Illustration of the hyperparameter optimization on splice (one specific
run, zoomed in the origin). The dashed lines are defined by averaging the best
parameters obtained on the test set (10 folds). For negative support, it turned 4
FN into FP and 1 TN into FP compared to the version without hyperparameter
tuning. For positive support, it turned one FP into TN. The hyperparameter values
are not optimal as a better result could have been achieved.

an accuracy of (1) in the four considered references on three dif-
ferent datasets. Except for heart and phishing, Neural Network
returns better results (0.46 more cases with correct classification
in average for breast, 71 for skin and almost 10 for splice).
Last, SVM gives better results in all three cases, but appear only
as best results in two datasets.

With hyperparameter tuning. An illustration of parameters tuning
on a real instance is depicted by Fig. 6. With hyperparame-
ter tuning, the accuracy lower bound is obtained by the same
dataset (0.8290 with adult). The lower bound on F1-score is
now obtained by adult with 0.8889. On heart, the accuracy
gains 5 percent point (pp) which represents a 35% error reduc-
tion. This allowed HCBR to rank first. On breast, the gain
represents 0.87pp which is about 29% error improvement and a
higher accuracy than [56] and [69]. For the other datasets, the
accuracy variation does not result in a better rank and the error
improvement lies between 2% for skin and 19% for phishing.

We explain the limited effect of hyperparameters by the fact
that for small support values, there can be several cases with the
exact same support but different outcomes. Two different cases
have the same support if the elements of their projections are
weighted the same despite being composed of different features.
In order to be more discriminative, one can increase the model
space complexity s.t. the support is obtained by more variables
which decreases the probability of collisions. See Section 6.2 for
a study of the model space limitations and possible remedies.

Discussion. Even if HCBR does not rank first in most cases, we
see at least three reasons to use it in practice. First, it provides
consistently good results on all datasets without a need to tune
any hyperparameter, without correcting the imbalanced datasets
or feature transformation that would require expert knowledge.
In other words, it requires absolutely no domain knowledge or
data science expertise to deploy and use. Second, HCBR works
directly in unstructured spaces allowing combining data from
multiple sources without tedious transformations. This has a con-
siderable advantage in practice where the information per case
is rarely structured by default. Last but not least, HCBR provides
local explanation: for each case and each group of features ei
in this case, HCBR provides not only the support for ei but also
all the cases that participated in increasing the support. In the
medical domain, the practitioner may check, for instance, the top

Table 4
Average MCC and rank obtained with several methods (Scikit-Learn imple-
mentation). The column ∆HCBR represents the relative difference in MCC w.r.t.
HCBR.
Method MCC Rank ∆HCBR

Neural Network 0.8914 1 5.68%
HCBR 0.8435 2 –
RBF SVM 0.8267 3 2.00%
Decision Tree 0.8066 4 4.37%
AdaBoost 0.8063 5 4.41%
k-NN 0.7859 6 6.82%
Linear SVM 0.7858 7 6.84%
QDA 0.7358 8 12.76%
Random Forest 0.7237 9 14.20%
Naive Bayes 0.6953 10 17.56%

Table 5
Average accuracy and rank obtained with several methods (Scikit-Learn imple-
mentation). The column ∆HCBR represents the relative difference in accuracy
w.r.t. HCBR.
Method Accuracy Rank ∆HCBR

HCBR 0.9360 1 –
Neural Network 0.9354 2 0.06%
RBF SVM 0.9247 3 1.16%
AdaBoost 0.9207 4 1.60%
Linear SVM 0.9115 5 2.62%
Decision Tree 0.9056 6 3.25%
k-NN 0.9011 7 3.81%
Random Forest 0.8903 8 4.88%
QDA 0.8802 9 6.27%
Naive Bayes 0.8235 10 13.59%

Fig. 7. Matthew Correlation Coefficient depending on the training set size for
skin. See the Additional Material, Section 5 for other datasets.

two groups of features, and for each, the five most influencing
past cases to find a reasonable justification to the prediction.

4.3.2. Robustness comparison
The average MCC achieved per method over the datasets is

reported in Table 4. The details per dataset can be found in the
Additional Material, Section 3. The counterpart for the accuracy
is provided by Table 5 and the Additional Material, Section 4.
Additionally, we displayed the evolution of MCC with the training
set size in Fig. 7.

The highest MCC value is obtained by Neural Network with
0.8914 followed by HCBR with 0.8435. Neural Network improves
HCBR result by 5.68% while HCBR improves the result of all other
methods from 2% to 17.56%. The lowest MCC score is obtained by

A. Quemy / Information Systems 85 (2019) 92–113 105

Naive Bayes with 0.6953, mostly because it performs poorly on
some datasets (0.2493 on adult, 0.5292 on phishing or 0.7600
on skin). In general, Neural Network and HCBR are the only two
methods whose ranks remain consistent across all datasets, close
to the first and second rank. On the contrary, methods like k-
Nearest Neighbors or Decision Tree performed very well on one
dataset (skin, resp. splice). Surprisingly, Random Forest not
only perform poorer than Decision Tree but also performs worse
than most methods. Naive Bayes and QDA perform very poorly in
general which is less surprising knowing the assumptions behind
those methods that are likely to be unrealistic on real datasets.

Regarding accuracy, HCBR is the best performing algorithm
followed by Neural Network. In general, the ranking is consistent
with the one obtained for MCC.

In other words, HCBR and Neural Network have shown to be
more versatile than the other approaches on this selected set of
classification instances and without parameter tuning. We have
no doubt that the results obtained with other methods can be
highly improved by a proper hyperparameter selection, in partic-
ular for Random Forest or even k-Nearest Neighbors. However,
this time-consuming operation can be avoided with HCBR that
provides the best compromise between ready-to-use and good
performances.

5. Experiments on unstructured datasets for text classification

In this section we study the performance of HCBR on un-
structured datasets and show it performs better in most cases
compared to the reference study that uses SVM.

5.1. Data and method

We used the European Court of Human Rights dataset pro-
vided by the authors of [76]. This dataset for binary classification
is broken down into three articles, namely Article 3, Article 6 and
Article 8. For each article, the authors collected some judgments
(250, 80 and 254 respectively for Article 3, 6 and 8) s.t. the preva-
lence is 50%. For each document, they isolated different sections
(Procedure, Circumstances, Relevant Law, Law) and excluded the
verdict section. The authors do not provide the raw text but the
Bag-of-Words representation obtained by keeping the 2000 most
common N-grams for N ∈ {1, 2, 3, 4}. The authors used a linear
SVM after applying a TF-IDF schema on the dataset to predict
whether an article has been violated.

On top of those Bag-of-Words representations, the authors
provide the representation of a judgment in a topic space. This
topic space is obtained by calculating the matrix of cosine dis-
tance between the documents and keeping the 30 top-
components after applying a spectral clustering. Finally, the au-
thors include two additional parts defined as the mean vector
of other sections after applying the TF-IDF transformation. Facts
is the mean vector of Circumstances and Relevant Law, and
Full as mean of all the other parts. Thus, they are continuous
contrarily to the other sections. In this work, we stacked the
representations to obtain Facts and Full as HCBR does not handle
properly continuous variables.

It has to be noted that for some parts, there are empty cases.
For the Law part with Article 3, there are 162 empty cases (64.8%
of the total casebase) with a prevalence of 17%, for the Article 6,
52 cases are empty with 17% prevalence and for the Article 8, 146
cases are empty for a 21% prevalence. This is not compatible with
the hypothesis s.t. if two cases are described by the same features,
they must have the same outcome used both by HCBR and SVM.

Therefore, the results are biased for both methods and could be
improved by a better preprocessing step.11

For each of the seven sections (Full, Procedure, Circumstances,
Relevant law, Facts, Law, Topics), we performed a 10-fold cross-
validation and reported the accuracy.

5.2. Results

Table 6 summarizes the results. The accuracy is improved in
14 cases out of 21, deteriorated in 5 and remained unchanged
in 2 cases. The improvement ranges from 1 to 20pp while the
deterioration ranges from 1pp to 8pp.

All sections have seen their average accuracy unchanged or
increased except for Topics. This is not surprising knowing Topics
is made out of 30 continuous variables which are not correctly
handled by HCBR. Surprisingly, the conclusions we can draw
from this experiment are quite opposed to those of the reference
study [76]. The full text was outperformed by using only the
section Circumstances while here, taking the full text returns a
much higher accuracy. The section with the best predictive power
was Circumstances. It is now Relevant Law. The section Law was
the worst predictor, it now one of the best, notably thanks to a
gain of 20pp on Article 3.

In the original study, the best performances are obtained on
Sections Topics and Topics and Circumstances with an accuracy
of 0.78, 0.84 and 0.78 respectively for Article 3, 6 and 8. Thus,
HCBR performed 2% lower on Article 3 and 6 and 1% better on
Article 8. Knowing continuous variables are not properly handled
yet, it is encouraging. Also, it turns out the best section for
HCBR is the full text, which implies that in practice there is
no need for feature engineering or time-consuming operations
such as splitting the text into subsections. We are confident that
HCBR could perform better with a larger number of tokens in the
bag-of-word representation and let this for future work.

6. Intrinsic performances and properties

In this section, we validate the time complexity (Section 6.1)
and discuss the model space limitations of HCBR (Section 6.2).
We show how the hyperparameters can be used to control the
confusion matrix in Section 6.3.

6.1. Computation time

We generated a casebase of N cases of size m s.t. case i is
described by {i, . . . , i+m} i.e., each case is partitioned into m ele-
ments (one discretionary feature). This is the worst-case scenario
in terms of the size of E if m < N because the family grows ex-
ponentially in function of m or N . We split the computation time
into constructing the hypergraph (and determining the intersec-
tion family) and calculating the strength of the partition. The
results are illustrated in Fig. 8. By increasing N with a fixed m, the
partition grows exponentially and thus, it is expected to have an
exponential curve for the strength computation. On the contrary,
building the hypergraph can be done in linear time when m fixed.
When N is fixed and m increases, constructing the hypergraph is
still doable in linear time as expected. Interestingly, calculating
the strength has two phases: ifm ≤ N , increasingm exponentially
increases the time (because E exponentially increases) but if m >

N , increasing m cannot results in an exponential growth in the
computation time (because E grows linearly).

11 Ironically, this supports our claim that shortening the data preprocessing
steps is necessary in order to avoid such hard-to-notice problems.

106 A. Quemy / Information Systems 85 (2019) 92–113

Table 6
Accuracy obtained by HCBR on the European Court of Human Rights dataset, depending on the article and the judgment section. The
columns ∆acc represent the difference with the reference study [76]. The color indicates if the result has been improved (green),
deteriorated (red) or unchanged (white).

Fig. 8. On the left, computation time to build the model (hypergraph construction + strength calculation) depending on N (m = 10), and on the right, depending
on m (N = 100). The case i is described by {i, . . . , i+m} s.t. each case is partitioned into m elements (one discretionary feature).

6.2. Model space limitations

We now study the learning curves to show the model space
limitations and propose some extensions left for future work. We
also discuss the tradeoff between model locality and generaliza-
tion.

6.2.1. Learning curves
The learning curves are useful to study the limit of the model

space on different datasets. It consists in plotting the accuracy
in function of the training set size for both the training and
the test sets. For the training set, it is expected to observe an
accuracy starting close to 1 and decreasing fast to reach a plateau.
A low stationary accuracy value indicates a high bias in the model
or/and an irreducible error contained in the dataset, such as noisy
or uninformative features. Oppositely, the accuracy on the test
sets starts close to 0 as the training set is small and should
increase until a plateau which is very often expected to be lower
than the accuracy of the training set. If the training set curve
converges toward a much higher value than the test set curve,
then the model has a large variance. In other words, to achieve a
good bias–variance tradeoff, the accuracy of both curves should
converge toward more or less the same value, expected as high
as possible.

The learning curves are calculated as the average over 10 runs
with random splits and are shown in Figs. 9 and 10. The first
remark concerns the variance. On all datasets, the variance is very
low and the accuracy on the test set extremely close to accuracy
of the training set. Despite a relatively low accuracy, HCBR seems
to reach a good bias–variance compromise on heart suggesting
a more complex model space might help. In general, the remark
applies on the four datasets displayed in Fig. 9 as the observed
error rate results from bias and not only from irreducible error.
Indeed, the literature comparison provided by Table 2 proves that
the accuracy could be improved.

For phishing and skin, we arrive at the same conclusion.
However, for those datasets, a heuristic is used during the pre-
diction phase. We discuss its implication on the learning curves
in the Additional Material, Section 6. Finally, the learning curve
of adult in Fig. 10 shows once again a small variance but high
bias.

The analysis of the learning curves indicates that the main
limitation of HCBR lies in a large bias. This may come either from
the model space complexity or the model selection method that
does not properly fit the parameters. The number of parameters
in the model is equal to the cardinality of µ, itself proportional
to the number of atoms in the training set. However, a closer
look at how a decision is taken reveals that each case has its
own small model as a convex combination of its features. In other
words, the real number of parameters to model the decision for
a given case never exceed its number of features. This might not
be enough to represent fairly complex functions. To discard the
second hypothesis, we conducted additional investigations on the
model selection in the next section.

6.2.2. Assessing model space limitations
We are interested in understanding whether it is possible for

HCBR to overfit the training set or at least improve significantly
the accuracy or MCC on the training set. We consider the matricial
formulation of the support,

s = Wµ (24)

and we are interested in knowing if there exists a µ s.t. s leads to
classify correctly all the examples. As we already verified that the
initial µ provides better results than baseline models, we would
like to perturbate as little as possible µ. For this, we calculate k
s.t. s+k would correctly classify all the examples. We are looking
for δ s.t.,

s+ k = W (µ+ δ) (25)

A. Quemy / Information Systems 85 (2019) 92–113 107

Fig. 9. Learning curves for heart, breast, mushrooms and splice datasets. Despite a bias and/or irreducible error observed on heart, breast and splice. The
model variance appears very low on all datasets. Conversely, the bias and/or irreducible error ranges from very low on mushrooms, relatively low on breast and
splice, to high for heart.

Fig. 10. Learning curve for adult. On the right, the training set size is restricted from 0 to 30% of the dataset.

⇔s+ k = Wµ+Wδ (26)

⇔k = Wδ (27)

H⇒ δ = W+k+ [I −W+W]w, ∀w ∈ RN (28)

with W+ the Moore–Penrose pseudo-inverse of W . When W is
not of full rank, the solutions of the undetermined system are
given for any vector w ∈ RN , however, it can be shown that
δ = W+k is a least-square minimizer, i.e. ∀x ∈ RM

∥Wx− k∥2 ≥
∥Wδ−k∥2. In particular, if ∥Wδ−k∥2 = 0, then all the elements
would be correctly classified.

Of course, it might not be possible to obtain δ s.t. ∥Wδ −

k∥2 = 0, but it does imply that there exist no couple (k, δ) s.t.
the accuracy is 1. Solving directly for all such couples seem to
be a difficult problem without additional assumptions and thus,
we adopted a slightly different approach: instead of fixing k a
priori, we formulated the problem as optimizing the Matthew
Correlation Coefficient:

δ∗ = max
δ∈RM

MCC(δ, µ,W)− c∥δ∥22 (29)

where MCC is the Matthew Correlation Coefficient associated to
s = Wδ and c a regularization factor. The regularization factor

108 A. Quemy / Information Systems 85 (2019) 92–113

Fig. 11. Maximal fitness value in the population in function of generations for adult, breast, heart, phishing, skin and splice. The fitness is lower than the
MCC by definition of (29).

Fig. 12. Influence of η on phishing dataset.

Fig. 13. Influence of η on breast dataset.

translates the idea that a smaller perturbation to obtain the same
MCC is better than a larger one. We arbitrarily set c to 0.1. Despite

further work could be needed to determine a more tailored value,
the conclusions drawn from this section would remain valid.

A. Quemy / Information Systems 85 (2019) 92–113 109

Fig. 14. Influence of η on heart dataset.

Fig. 15. Influence of η on adult dataset.

To solve (29), we used a (µ + λ) genetic algorithm with
an evolution strategy. Each individual is made of two vectors:
δ ∈ RM and a ν ∈ RM representing the mutation probability
of each corresponding component of δ. The mutation operator
is a centered gaussian perturbation and the crossover a 2-points
crossover. The implementation is provided by DEAP [77].

We performed 10 runs of a 10-fold cross-validation with ran-
dom split and compared to the result obtained without the opti-
mization process. The dataset mushrooms has been discarded as
HCBR reached an accuracy of 1. We set the population to 100,
and for each dataset, we adjusted the number of generations and
the standard deviation of the gaussian mutation manually (see
the Additional Material, Section 7). To set the standard devia-
tion of the mutation, we used σ =

µ−

α
where α is an factor

determined empirically, and µ− defined by min
i,j

µi − µj i.e. the

minimal difference between two components of µ. The rationale
behind is that, once again, we would like to slightly perturbate µ

and it is reasonable to think that a perturbation should be small
enough not to directly switch the estimation of two elements of
µ. To conclude, we used a Wilcoxon signed-rank test at 5% and
1% on the test MCC obtained with and without the optimization
process. There are three possible scenarios: (1) if the MCC can be
improved on the training set and on the test set, it means the
problem comes from the model selection method (estimation of
µ and training) and results might be improved without changing
the model space, (2) if the MCC can be improved on the training
set but remains the same or deteriorate on the test set, the

model space can represent the training set but overfits, and thus,
should be extended (3) if the MCC cannot be improved even on
the training set, then the model space is definitely not capable
of representing properly the underlying decision mapping and
should be extended.

A summary of the results are provided in Table 7 and the
evolution of the fitness by Fig. 11. A look at Fig. 11 confirms that
the genetic algorithm converged or was closed to converged and
was able to optimize the cost function. In all cases except skin,
the optimization procedure succeeded to find a vector δ that
yields a better MCC on the test sets. However, the improvement is
quantitatively different from a dataset to another. For instance, on
heart the absolute difference in MCC is 16% (relative difference:
23.64%) while on phishing the difference is barely 1%. In gen-
eral, the higher is the initial MCC and the less the improvement
is visible.

The variations of MCC on the test set are mitigated. The pro-
cedure returns significant changes in only two cases (adult) and
(skin) for which one is improved (adult) and one deteriorated
(skin). It indicates that the model selection and training phase
described in Sections 3.3 and 3.4 return one of the best MCC
achievable within the model space. More precisely, the vector µ

represents one of the best support approximation in its neighbor-
hood. Notice that for skin, the optimization process deteriorated
the MCC on the training set. A smaller mutation factor might help,
however we believe this would barely change the results and thus
entail the conclusion on the model space limitation.

110 A. Quemy / Information Systems 85 (2019) 92–113

Table 7
Results obtained on solving (29). The columns initial MCC, ∆ MCC training and ∆

MCC test represent respectively the initial MCC on the training set, the difference
of MCC obtain on the training with and without the genetic algorithm, the
difference of MCC obtain on the test sets with and without the genetic algorithm.
WSR r% indicates the result of the Wilcoxon signed-rank test at r% risk (yes for
significant difference in the sample median, no otherwise).
Dataset Initial MCC ∆ MCC training ∆ MCC test WSR 5% WSR 1%

adult 0.5190 0.0400 0.0084 Yes Yes
breasts 0.9360 0.0312 −0.0025 No No
heart 0.6912 0.1634 −0.0023 No No
phishing 0.8690 0.0093 0.0002 No No
skin 0.8432 −0.0242 −0.0118 Yes Yes
splice 0.8866 0.0208 0.0006 No No

6.3. Hyperparameters η to control the accuracy

We showed in Section 4.3.1 that the hyperparameters can
increase the overall performances while the impact is limited
by the model space. In this experiment, we show how η can be
used to control the accuracy by specifying a threshold on the risk
associated to a prediction.

We used a 90–10 split and set η−1 = η1 to ease the vi-
sualization. Instead of using the decision function defined by
(R2), we did not produce a prediction if the constraints C1 or
C0 were not respected. It can be viewed as creating a third class
unknown for which we consider HCBR cannot produce a decision.
We measured the accuracy and the test set size ratio for which a
prediction has been produced for different values of η := η−1 =

η1. If the model correctly approximates the underlying mapping
function J , increasing η should increase the accuracy while the
test set ratio should remain high. Additionally, we plot the test
set ratio in function of the accuracy and calculate the Pareto
frontier12 which represents the best compromises accuracy/ratio.
The closer the points are to (1, 1) the better it is. A Pareto frontier
consisting of (1, 1) represents the perfect model (e.g. reached
on mushroom dataset). Figs. 12–15 provides the result for the
best and worst two datasets. Fig. 16 shows all of the four Pareto
frontiers.

As expected, the results are better on phishing and breast.
On phishing, breast and heart, the accuracy globally in-
creases with η while on heart the accuracy slightly decreases
indicating poor influence of the hyperparameters and model.

Notice that for certain values of η it is possible to reach 100%
accuracy with heart (sacrificing over 70% of the dataset) while
it is not with breast. Also, for high values of η, we observe a
fall in accuracy for breast. We suspect those two phenomena to
appear because we used the same value for η0 and η1.

7. Discussion

7.1. On the hypergraph representation

The reader may have observed that the model space has a
purely set-theoretic interpretation, and no hypergraph-specific
property is used so far. Another possibility would be to use a
bipartite graph with the first class being the cases of X and
the second the elements of E . We justify viewing the method
from a hypergraph perspective by three axes currently being
investigated:

12 Points s.t. improving one component would deteriorate the other one.

Fig. 16. Pareto Frontiers comparison.

• Model space extension. The current model space is not
complex enough (see Section 6.2). An extension using hy-
perpaths is proposed in Section 7.2. Sets or graphs are not
suitable to manipulate such space.
• Justification. Most justification techniques provide a justifi-

cation about the model itself (e.g. a decision tree13) or pro-
vide hints about each decisions under the form of weights
for each variable [78]. In particular, [79] unifies the literature
and formulates the justification as learning a simple model.
With HCBR we are exploring the possibility to generate
explanations tailored for an element depending on its neigh-
bors, in a case-based reasoning fashion. For this, we need a
notion of neighborhood given by the hyperpaths. This is not
possible with a set approach, feasible with graphs but less
natural than with hypergraphs.
• Performances. Hypergraphs have computational advantages

over graphs. Indeed, hypergraphs can be represented as
graphs using clique expansion technique. However, increas-
ing hyperedges cardinality leads to a larger increase in the
graph counterpart [80].

7.2. On the model space extension

It is now clear that the model space is too limited. The number
of parameters to describe a case is lower than m, the cardinal
of the partition E , and at most |x|. The number of parameters to
describe the whole datasets is m.

To increase the model space complexity, there are two paths
to explore in future work:

1. Increasing the number of parameters per case. Currently,
the support of x is modeled by a linear combination over
the partition of its features s.t. the interactions between
the elements of the partition are not taken into account.
A reasonable way to go is to use some combinations of
those elements. For instance, if x is partitioned into e1, e2
instead of modeling the support as s(x) = w(e1, x)µ(e1) +
w(e2, x)µ(e2), we would have s(x) = w(e1, x)µ(e1) +
w(e2, x)µ(e2) + w(e1∪2, x)µ(e1∪2). This would allow to be
more discriminative and solve the problem of cases having
the same support.

13 https://github.com/andosa/treeinterpreter.

https://github.com/andosa/treeinterpreter

A. Quemy / Information Systems 85 (2019) 92–113 111

2. Increasing the number of parameters of the whole
model. A hyperpath of length k is a sequence of hyperedges
(x1, . . . , xk) such that ∀i ∈ {1, . . . , k − 1}, xi ∩ xi+1 ̸= ∅.
Instead of modeling the support as a combination of the
elements ei belonging to a specific case xi, it could be
extended to include the elements e ∈ E belonging to the
neighbor cases where a neighbor is a case that can be
reached by a hyperpath of length k. Thus, the model space
proposed in this paper would be the particular case with
k = 0.

Naturally, it raises many questions, notably how to extend w and
µ. The second point seems to be the most interesting because
it really requires the hypergraph representation and cannot be
interpreted using set theory.

7.3. On the model locality

The generalization capacity of HCBR depends on the number
of intersections between the examples. Conversely, if a new case
does not intersect with the examples, it is impossible to generate
a prediction. Therefore, the locality property depends on how
much the examples cover the feature space.

Consider that it is possible to choose n examples of k features
in a space with K features and K ≫ nk. There is a tradeoff
between covering as much space as possible and having enough
intersections to construct a meaningful model. The first extreme
configuration consists in maximizing the space cover: there is
no intersection between cases, the accuracy during the training
phase is 1 but the generalization capacity is null. The probability
that a new case will intersect with some examples is maximized.
The second extreme configuration maximizes the intersections
between the examples: all cases intersect with each other, there-
fore minimizing the space cover and thus the probability that a
new case will intersect with the training set. The accuracy on the
training set might not be 1 but the generalization capacity is high
compared to the previous case.

For configurations close to the first extreme, it is possible to
generate more intersections by using clustering or discretization
in the original feature space. For instance, ‘‘variable_1 = v_1’’ and
‘‘variable_1 = v_2’’ could be encoded the same if both values
belong to the same cluster. This requires slightly more feature
engineering that previously stated. For the second case, the prob-
lem lies in the training set itself. It is not specific to HCBR, but to
the fact the training set is not representative of the underlying
distribution that generates the cases to classify. In both cases,
acquiring more data can help.

In the Additional Material, Section 8, we discuss a way of
redefining the decision function to take into account this locality
property.

8. Conclusion

This paper presented HCBR, a method for binary classification
in unstructured space. The method can be seen as learning a
metric that optimizes the classification score on the training
set. Contrarily to most classification methods or metric learning
methods, HCBR does not require to work in vector space and
is agnostic to data representation. Therefore, it allows combin-
ing information from multiple sources by simply stacking the
information. It does not require transforming the data to obtain
satisfactory results.

The general framework introduced in Section 3.2 is instanti-
ated in Sections 3.3 and 3.4 where the support is determined
using all the interactions between the hyperedges. Beyond this
generic implementation, one can imagine different model selec-
tion methods using some assumptions or prior on the data.

HCBR has been tested on seven well-known structured
datasets and demonstrated similar accuracy when compared to
the best results from the literature, with and without hyperpa-
rameter tuning. We showed that the model is properly calibrated.
Additionally, we performed a comparison with nine alternative
methods to find out HCBR, along with Neural Network, outper-
forms in average with a constant good result. Those experiments
showed that HCBR can easily be used and deployed in practice,
as it lowers the requirement for feature engineering, data pre-
processing and hyperparameter tuning, i.e. the most consuming
operations in practical machine learning nowadays.

In Section 5, we tested HCBR on unstructured datasets and
showed it improves the accuracy in most cases compared to
reference study.

We empirically validated the worst-case complexity. Finally,
we studied the properties and limitations of the model space. We
showed that the model selection procedure provides one of the
best possible performance within the model space. Hence, further
work will focus on extending the model space as proposed in
Section 7.2.

This proof of concept raises many questions and offer many
improvement axes. First, it seems relatively easy to extend the
method to several classes, with a linear increase of the compu-
tation time. As calculating the class support represents most of
the computational effort, working on an approximation of the
main measure should be investigated. The solution may come
from exploring the feature selection capacity of HCBR. It may be
possible to remove from the partition some elements that are not
discriminative enough, reducing the computation time.

Additionally, we plan to investigate explanation generation
about each prediction, using the link between cases in a similar
way a lawyer may use past cases to make analogies or counter-
examples. We also work on an online version of HCBR where
the hypergraph is constructed case after case, including forget-
ting some old cases (which would allow handling non-stationary
environment). It seems possible not only to add new examples
dynamically, but also some vertices (i.e. adding some pertinent
information to some cases) without generating the whole model
from scratch.

Last but not least, we would like to answer some questions:
can we provide some quality bounds depending on the ini-
tial hypergraph configuration w.r.t. the number of intersections
and space cover? How to handle continuous values without
discretization?

Acknowledgment

The author warmly thanks Dr. Jean-François Puget, IBM Ana-
lytics, for his useful suggestions and advice in order to improve
this paper.

References

[1] A. Quemy, Binary classification with hypergraph case-based reasoning, in:
Proc. Int. Workshop Des. Optim. Lang. Anal. Process. Big Data, 2018.

[2] S. Boucheron, O. Bousquet, G. Lugosi, Theory of classification: A survey of
some recent advances, ESAIM Probab. Stat. 9 (2005) 323–375.

[3] V. Vapnik, The nature of Statistical Learning Theory, Springer science &
business media, 2013.

[4] F. Rosenblatt, The perceptron: a probabilistic model for information storage
and organization in the brain, Psychol. Rev. 65 (6) (1958) 386.

[5] D.R. Cox, The regression analysis of binary sequences, J. R. Stat. Soc. (1958)
215–242.

[6] Y. Lin, A note on margin-based loss functions in classification, Statist.
Probab. Lett. 68 (1) (2004) 73–82.

[7] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Mach.
Learn. 29 (2–3) (1997) 131–163.

[8] W.N. Venables, B.D. Ripley, Tree-based methods, in: Modern Applied
Statistics with S, Springer, 2002, pp. 251–269.

http://refhub.elsevier.com/S0306-4379(18)30303-X/sb2
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb2
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb2
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb3
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb3
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb3
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb4
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb4
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb4
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb5
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb5
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb5
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb6
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb6
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb6
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb7
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb7
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb7
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb8
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb8
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb8

112 A. Quemy / Information Systems 85 (2019) 92–113

[9] L. Breiman, Classification and Regression Trees, Routledge, 2017.
[10] T.K. Ho, Random decision forests, in: Proc. Int. Conf. Doc. Anal. Recogni,

vol. 1, IEEE, 1995, pp. 278–282.
[11] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[12] R. Couronné, P. Probst, A.-L. Boulesteix, Random forest versus logistic

regression: a large-scale benchmark experiment, BMC Bioinformatics 19
(1) (2018) 270.

[13] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn.
63 (1) (2006) 3–42.

[14] J.H. Friedman, Greedy function approximation: a gradient boosting
machine, Ann. Statist. (2001) 1189–1232.

[15] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436.

[16] J. Schmidhuber, Deep learning in neural networks: An overview, Neural
Netw. 61 (2015) 85–117.

[17] J.V. Davis, B. Kulis, P. Jain, S. Sra, I.S. Dhillon, Information-theoretic metric
learning, in: Proc. Int. Conf. Mach. Learn, ACM, 2007, pp. 209–216.

[18] A. Bellet, A. Habrard, M. Sebban, A survey on metric learning for feature
vectors and structured data, CoRR abs/1306.6709 (2013).

[19] P.C. Mahalanobis, On the generalised distance in statistics, Proc. Nat. Inst.
Sci. India 2 (1936) 49–55.

[20] F. Wang, J. Sun, Survey on distance metric learning and dimensionality
reduction in data mining, Data Min. Knowl. Discov. 29 (2) (2015) 534–564.

[21] K.Q. Weinberger, J. Blitzer, L.K. Saul, Distance metric learning for large
margin nearest neighbor classification, Adv. Neural Inf. Process. Syst.
(2006) 1473–1480.

[22] K.Q. Weinberger, L.K. Saul, Distance metric learning for large margin
nearest neighbor classification, J. Mach. Learn. Res. 10 (Feb) (2009)
207–244.

[23] G. Chechik, V. Sharma, U. Shalit, S. Bengio, Large scale online learning
of image similarity through ranking, J. Mach. Learn. Res. 11 (2010)
1109–1135.

[24] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online
passive-aggressive algorithms, J. Mach. Learn. Res. 7 (Mar) (2006) 551–585.

[25] A. Bellet, A. Habrard, M. Sebban, Similarity learning for provably accu-
rate sparse linear classification, in: Proc. Int. Conf. Mach. Learn, United
Kingdom, 2012.

[26] A. Kocsor, K. Kovács, C. Szepesvári, Margin maximizing discriminant
analysis, in: Eur. Conf. Mach. Learn, Springer, 2004, pp. 227–238.

[27] S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discrimina-
tively, with application to face verification, in: Comput. Vision Pattern
Recogni, vol. 1, IEEE, 2005, pp. 539–546.

[28] J. Oncina, M. Sebban, Learning stochastic edit distance: application in
handwritten character recognition, Pattern Recognit. 39 (2006) 1575–1587.

[29] N. Dalvi, P. Bohannon, F. Sha, Robust web extraction: An approach based
on a probabilistic tree-edit model, in: Proc. Int. Conf. Manage. Data, in:
SIGMOD, ACM, New York, NY, USA, 2009, pp. 335–348.

[30] M. Bernard, A. Habrard, M. Sebban, Learning stochastic tree edit distance,
in: Eur. Conf. Mach. Learn, Springer, 2006, pp. 42–53.

[31] M. Chessell, F. Scheepers, N. Nguyen, R. van Kessel, R. van der Starre,
Governing and managing big data for analytics and decision makers.

[32] S.F. Crone, S. Lessmann, R. Stahlbock, The impact of preprocessing on data
mining: An evaluation of classifier sensitivity in direct marketing, European
J. Oper. Res. 173 (3) (2006) 781–800.

[33] T. Dasu, T. Johnson, Exploratory Data Mining and Data Cleaning, vol. 479,
John Wiley & Sons, 2003.

[34] T. Furche, G. Gottlob, L. Libkin, G. Orsi, N. Paton, Data Wrangling for Big
Data: Challenges and Opportunities, OpenProceedings.org, 2016.

[35] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N.H. Riche, C. Weaver,
B. Lee, D. Brodbeck, P. Buono, Research directions in data wrangling:
Visuatizations and transformations for usable and credible data, Inf. Vis.
10 (4) (2011) 271–288.

[36] B. Bilalli, A. Abelló, T. Aluja-Banet, On the predictive power of meta-
features in openml, Int. J. Appl. Math. Comput. Sci. 27 (4) (2017)
697–712.

[37] L.M. Haas, M.A. Hernández, H. Ho, L. Popa, M. Roth, Clio grows up: from
research prototype to industrial tool, in: Proc. Int. Conf. Manage. Data,
ACM, 2005, pp. 805–810.

[38] G.G. Robertson, M.P. Czerwinski, J.E. Churchill, Visualization of mappings
between schemas, in: Proc. SIGCHI Conf Hum. Factors Comput Syst., ACM,
2005, pp. 431–439.

[39] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, N. Polyzotis, See
db: efficient data-driven visualization recommendations to support visual
analytics, Proc. VLDB Endow. 8 (13) (2015) 2182–2193.

[40] A. Quemy, Data pipeline selection and optimization, in: Proc. Int. Workshop
Des. Optim. Lang. Anal. Process. Big Data, 2019.

[41] G.E. Batista, M.C. Monard, et al., A study of k-nearest neighbour as an
imputation method, HIS 87 (251–260) (2002) 48.

[42] C. Preda, G. Saporta, M.H.B.H. Mbarek, The NIPALS algorithm for missing
functional data, Rev. Roumaine Math. Pures Appl. 55 (4) (2010) 315–326.

[43] D.J. Stekhoven, P. Bühlmann, Missforest—non-parametric missing value
imputation for mixed-type data, Bioinf. 28 (1) (2011) 112–118.

[44] M. Kuhn, K. Johnson, Applied Predictive Modeling, Vol. 26, Springer, 2013.
[45] P. Royston, et al., Multiple imputation of missing values, Stata J. 4 (3)

(2004) 227–241.
[46] S. Van Buuren, Flexible Imputation of Missing Data, Chapman and Hall/CRC,

2018.
[47] S. Lifan, G. Yue, Z. Xibin, W. Hai, G. Ming, S. Jiaguang, Vertex-weighted

hypergraph learning for multi-view object classification, in: Proc. Int. Joint
Conf. Artif. Intell, 2017, pp. 2779–2785.

[48] Y. Huang, Q. Liu, S. Zhang, D.N. Metaxas, Image retrieval via probabilistic
hypergraph ranking, in: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit, 2010, pp. 3376–3383.

[49] D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: Clustering,
classification, and embedding, in: B. Schölkopf, J.C. Platt, T. Hoffman (Eds.),
Adv. Neural Inf. Process. Syst, MIT Press, 2007, pp. 1601–1608.

[50] C. Berge, Hypergraphs: Combinatorics of Finite Sets, Vol. 45, Elsevier, 1984.
[51] R. Paige, R.E. Tarjan, Three partition refinement algorithms, SIAM J.

Comput. 16 (6) (1987) 973–989.
[52] D. Chicco, Ten quick tips for machine learning in computational biology,

BioData Min. 10 (1) (2017).
[53] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter,

Efficient and robust automated machine learning, in: C. Cortes, N.D.
Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Eds.), Adv. Neural Inf. Process.
Syst, Curran Associates, Inc., 2015, pp. 2962–2970.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[55] R.P. Datta, S. Saha, Applying rule-based classification techniques to medical
databases: an empirical study, Int. J. Bus. Intel. Syst. Eng. 1 (1) (2016)
32–48.

[56] L. Jiang, Learning instance weighted naive bayes from labeled and
unlabeled data, J. Intell. Inf. Syst. 38 (1) (2012) 257–268.

[57] A.M. Sagir, S. Sathasivam, A hybridised intelligent technique for the
diagnosis of medical diseases, Pertanika J. Sci. Tech. 25 (2) (2017).

[58] S. Das, Filters, wrappers and a boosting-based hybrid for feature selection,
in: Proc. Int. Conf. Mach. Learn, 2001, pp. 74–81.

[59] W. Hadi, G. Issa, A. Ishtaiwi, ACPRISM: Associative classification based on
PRISM algorithm, Inform. Sci. 417 (Supplement C) (2017) 287–300.

[60] F. Thabtah, R.M. Mohammad, L. McCluskey, A dynamic self-structuring
neural network model to combat phishing, in: Int. Jt. Conf. Neur. Net, 2016,
pp. 4221–4226.

[61] G. Kou, Y. Lu, Y. Peng, Y. Shi, Evaluation of classification algorithms using
MCDM and rank correlation, Int. J. Inf. Tech. Decis. Making 11 (01) (2012)
197–225.

[62] Y.-J. Lee, O. Mangasarian, SSVM: A smooth support vector machine for
classification, Comput. Optim. Appl. 20 (1) (2001) 5–22.

[63] R.B. Bhatt, G. Sharma, A. Dhall, S. Chaudhury, Efficient skin region segmen-
tation using low complexity fuzzy decision tree model, in: IEEE India Conf,
2009, pp. 1–4.

[64] F.Ö. Çatak, Classification with boosting of extreme learning machine over
arbitrarily partitioned data, Soft Comput. 21 (9) (2017) 2269–2281.

[65] H.-L. Chen, B. Yang, J. Liu, D.-Y. Liu, A support vector machine classifier
with rough set-based feature selection for breast cancer diagnosis, Expert
Syst. Appl. 38 (7) (2011) 9014–9022.

[66] K. Polat, S. Güneş, Breast cancer diagnosis using least square support vector
machine, Digit. Signal Process. 17 (4) (2007) 694–701.

[67] M.F. Akay, Support vector machines combined with feature selection for
breast cancer diagnosis, Expert Syst. Appl. 36 (2) (2009) 3240–3247.

[68] A. Marcano-Cedeño, J. Quintanilla-Domínguez, D. Andina, WBCD breast
cancer database classification applying artificial metaplasticity neural
network, Expert Syst. Appl. 38 (8) (2011) 9573–9579.

[69] E.D. Übeyli, Implementing automated diagnostic systems for breast cancer
detection, Expert Syst. Appl. 33 (4) (2007) 1054–1062.

[70] A. Fallahi, S. Jafari, An expert system for detection of breast cancer using
data preprocessing and Bayesian network, Int. J. Adv. Sci. Tech. 34 (2011)
65–70.

[71] J.R. Quinlan, Improved use of continuous attributes in C4. 5, J. Artificial
Intelligence Res. 4 (1996) 77–90.

[72] M.T. Cazzolato, M.X. Ribeiro, A statistical decision tree algorithm for
medical data stream mining, in: Proc. IEEE Int. Symp. Comput.-Based Med.
Syst, 2013, pp. 389–392.

[73] S. Basterrech, A. Mesa, N.-T. Dinh, Generalized linear models applied for
skin identification in image processing, in: Intell. Data Anal. Appl, Springer,
2015, pp. 97–107.

[74] M.A.U.H. Tahir, S. Asghar, A. Zafar, S. Gillani, A hybrid model to detect
phishing-sites using supervised learning algorithms, in: Int. Conf. Comput.
Sci. Comp. Intell, 2016, pp. 1126–1133.

[75] H. He, E.A. Garcia, Learning from imbalanced data, IEEE Trans. Knowl. Data
Eng. 21 (9) (2009) 1263–1284.

http://refhub.elsevier.com/S0306-4379(18)30303-X/sb9
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb10
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb10
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb10
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb11
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb12
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb12
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb12
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb12
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb12
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb13
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb13
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb13
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb14
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb14
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb14
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb15
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb15
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb15
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb16
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb16
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb16
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb17
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb17
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb17
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb18
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb18
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb18
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb19
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb19
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb19
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb20
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb20
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb20
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb21
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb21
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb21
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb21
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb21
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb22
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb22
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb22
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb22
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb22
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb23
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb23
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb23
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb23
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb23
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb24
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb24
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb24
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb26
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb26
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb26
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb27
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb27
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb27
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb27
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb27
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb28
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb28
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb28
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb29
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb29
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb29
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb29
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb29
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb30
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb30
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb30
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb32
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb32
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb32
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb32
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb32
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb33
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb33
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb33
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb34
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb34
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb34
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb35
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb36
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb36
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb36
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb36
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb36
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb37
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb37
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb37
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb37
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb37
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb38
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb38
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb38
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb38
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb38
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb39
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb39
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb39
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb39
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb39
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb41
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb41
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb41
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb42
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb42
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb42
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb43
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb43
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb43
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb44
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb45
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb45
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb45
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb46
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb46
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb46
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb49
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb49
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb49
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb49
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb49
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb50
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb51
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb51
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb51
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb52
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb52
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb52
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb53
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb54
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb55
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb55
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb55
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb55
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb55
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb56
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb56
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb56
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb57
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb57
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb57
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb59
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb59
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb59
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb61
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb61
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb61
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb61
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb61
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb62
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb62
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb62
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb64
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb64
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb64
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb65
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb65
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb65
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb65
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb65
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb66
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb66
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb66
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb67
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb67
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb67
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb68
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb68
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb68
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb68
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb68
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb69
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb69
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb69
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb70
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb70
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb70
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb70
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb70
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb71
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb71
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb71
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb73
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb73
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb73
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb73
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb73
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb75
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb75
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb75

A. Quemy / Information Systems 85 (2019) 92–113 113

[76] N. Aletras, D. Tsarapatsanis, D. Preoţiuc-Pietro, V. Lampos, Predicting judi-
cial decisions of the european court of human rights: a natural language
processing perspective, PeerJ Comput. Sci. 2 (2016) e93.

[77] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné,
DEAP: Evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012)
2171–2175.

[78] M.T. Ribeiro, S. Singh, C. Guestrin, Why should I trust you?: Explaining the
predictions of any classifier, in: Proc. Int. Conf. Knowl. Discov. Data Min,
ACM, 2016, pp. 1135–1144.

[79] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model
predictions, in: Adv. Neural Inf. Process. Syst, 2017, pp. 4765–4774.

[80] L. Pu, B. Faltings, Hypergraph learning with hyperedge expansion, in: Jt.
Eur. Conf. Mach. Learn. Knowl. Discov. Datab, Springer, 2012, pp. 410–425.

http://refhub.elsevier.com/S0306-4379(18)30303-X/sb76
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb76
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb76
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb76
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb76
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb77
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb77
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb77
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb77
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb77
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb78
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb78
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb78
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb78
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb78
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb79
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb79
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb79
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb80
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb80
http://refhub.elsevier.com/S0306-4379(18)30303-X/sb80

	Binary classification in unstructured space with hypergraph case-based reasoning
	Introduction
	Binary classification and related work
	Linear binary classification
	Other approaches to binary classification
	On the necessity and problems of unstructured spaces
	Metric learning
	Data wrangling and missing data

	Classification and hypergraph
	Binary classification in unstructured spaces

	Hypergraph case-based reasoning
	Representation and projection
	Model space
	Step 1 — Model selection
	Step 2 — Training
	Step 3 — Decision rule refinement
	Time complexity

	Experiments on structured datasets
	Data and method
	Experiment 1 — Literature comparison
	Experiment 2 — Robustness comparison

	Previous work on the datasets
	Results
	Literature comparison
	Robustness comparison

	Experiments on unstructured datasets for text classification
	Data and method
	Results

	Intrinsic performances and properties
	Computation time
	Model space limitations
	Learning curves
	Assessing model space limitations

	Hyperparameters to control the accuracy

	Discussion
	On the hypergraph representation
	On the model space extension
	On the model locality

	Conclusion
	Acknowledgment
	References

